Calculus Final
Find the Indefinite Integral: S x sqrt(2x +1) dx
(1/10)(2x+1)^(5/2) - (1/6)(2x+1)^(3/2) +C
Evaluate the integral: S (t^2 +7t +9)dt
(t^3)/3 + (7t^2)/2 +9t +C
Integration by Parts: S x ln x dx
(x^2)/4 (2ln x -1)+C
Evaluate the integral: S8,-8 -6 ^3sqrtx^2 dx
-1152 / 5
Find the Indefinite Integral: S x^3 sqrt(x+2) dx
sqrt (x+2) [(2x^4)/9 +(4x^3)/63 - (16x^2)/105 + (128x)/315 - 512/315 ] +C
Find the derivative of the function: y= 11y^4 +5y^3 +5y^2 +11
y'= 44y^3 + 15y^2 +10y
Find the derivative of the function: y= 12z^4 - 4z +14
y'= 48z^3 - 4
Find the Indicated partial derivative: z= ln(x^3 y) ; zxx
zxx= - 3 / x^2
Use substitution to integrate the given funtion: S 6x/sqrt(5-5x^2) dx
- (6 sqrt (1-x^2))/sqrt 5 +C
Integrate using partial fraction decomposition: S (x-2)/[x(3x^2 + 7x +4)] dx
- (ln(x))/2 + 3ln(x+1) - 5/2 ln(3x +4) +C
Integrate using partial fraction decomposition: S (2x+1)/[x(2x^2 +x-6)] dx
- (ln(x))/6 -3/14 ln(x+2)+ 8/21 ln(2x-3) +C
Integrate using partial fraction decomposition: S (2-x)/[x^2 (x+4)] dx
-(3ln(x))/8 + 3/8 ln(x+4) - 1/2x +C
Use substitution to integrate the given funtion: S x/sqrt(9-2x) dx
-1/3 sqrt(9-2x) (x+9) +C
Use substitution to integrate the given funtion: S (2x-1)/(-6x^2 +6x+6) dx
-1/6 ln(x^2 -x-1) +C
Evaluate the integral: S32,0 -5 ^5sqrt(x^4) dx
-12800 / 9
Evaluate the integral: S2,1 -9x^3 dx
-135 / 4
Evaluate the integral: S243,-243 -7 ^5sqrt(x^4) dx
-153090
Evaluate the integral: S8,-8 -5 ^3sqrtx^2 dx
-192
Integrate using partial fraction decomposition: S [2(x+1)]/[x^2 (3x+2)] dx
-2(-(ln(x))/4 +1/4 ln(3x+2) -1/2x) +C
Integrate using partial fraction decomposition: S- 2/[x(x^2 +2x -6)] dx
-2(1/10 ln(x-2) -(ln(x))/6 +1/15 ln(x+3))+C
Integrate using partial fraction decomposition: S [2(x+1)]/ (6x^3 -7x^2 +1) dx
-2(1/2 ln(x-1) - 3/5 ln(2x - 1) + 1/10 ln(3x +4)) +C
Integrate using partial fraction decomposition: S - 2/[x(x^2 +2x -3)] dx
-2(1/4 ln(x-1) -(ln(x))/3 +1/12 ln(x+3))+C
Use substitution to integrate the given funtion: S sqrt(6-5x) xdx
-2/125 (6-5x)^3/2 (5x+4)+C
Use substitution to integrate the given funtion: S x/sqrt (8-3x) dx
-2/27 sqrt(8-3x) (3x+16)+C
Use substitution to integrate the given funtion: S x/sqrt(7-x) dx
-2/3 sqrt(7-x) (x+14) +C
Find the double Integral: S4,9 S16,1 sqrt x dxdy
-210
Evaluate the integral: S5,1 -9x^5 dx
-23436
Integrate using partial fraction decomposition: S (-x-1)/[x(2x^2 -9x +9)] dx
-4/9 ln(x-3) - (ln(x))/9 +5/9 ln(2x - 3) +C
Evaluate the integral: S5,-2 -4x^2 dx
-532 / 3
Find the double Integral: S2,-1 S0,-2 xdxdy
-6
Evaluate the integral: S4,1 -3/x^4 dx
-63 / 64
Evaluate the integral: S5,-1 -3x^5 dx
-7812
Use substitution to integrate the given funtion: S (70x -7)/(-5x^2 +x-4) dx
-7ln(5x^2 -x+4)+C
Evaluate the integral: S5,1 -2/(x^2) dx
-8 / 5
Use substitution to integrate the given funtion: S (24x -20)/sqrt(-3x^2 +5x +1) dx
-8 sqrt(-3x^2 +5x+1) +C
Use substitution to integrate the given funtion: S (48x +16) sqrt(-6x^2 -4x +7) dx
-8/3 (-6x^2 -4x+7)^3/2 +C
Evaluate the integral: S3,-1 -4x^3 dx
-80
Evaluate the integral: S2,-1 3/(x^2) dx
-9 / 2
Evaluate the integral: S243,0 -9 ^5sqrt(x^4) dx
-98415
Integrate using partial fraction decomposition: S (2-x)/(x+1)^2 dx
-ln(x+1) -3/(x+1) +C
Partial fractions Integration: S 3/(x^2 -3x) dx
-ln|x| +ln|x-3| +C
Find the double Integral: S1,-1 S1,-1 ydxdy
0
Find the double Integral: S2,-2 S3,-1 ydxdy
0
Find the double Integral: S2,0 S2,-2 xdxdy
0
Use substitution to integrate the given funtion: S x/(sqrt(4x+5)) dx
1/12 (2x-5) sqrt(4x+5) +C
Use substitution to integrate the given funtion: S x/(5x +3) dx
1/25 (5x+3) - 3/25 ln(5x+3)+C
Use substitution to integrate the given funtion: S 4x/(6x^2 -6) dx
1/3 ln(x^2 -1) +C
Use substitution to integrate the given funtion: S x/sqrt(-8x -5) dx
1/48 sqrt(-8x -5) (5-4x) +C
Use substitution to integrate the given funtion: S (30x +5)/sqrt(3x^2 +x-3) dx
10 sqrt(3x^2 +x-3) +C
Use substitution to integrate the given funtion: S (10x +25)/sqrt(x^2 +5x -8) dx
10 sqrt(x^2 +5x-8) +C
Find the double Integral: S16,0 S36,9 sqrt x dydx
1152
Find the double integral: S5,1 S-2,-3 xdydx
12
Find the double Integral: S4,0 S4,1 sqrt y dxdy
16
Find the double Integral: S1,0 S4,0 sqrt y dydx
16 / 3
Evaluate the integral: S1,0 4 ^4sqrtx^3 dx
16 / 7
Find the double Integral: S9,0 S9,0 sqrt y dxdy
162
Find the double Integral: S2,0 S2,1 9dydx
18
Evaluate the integral: S4,-2 8x^2 dx
192
Integrate using partial fraction decomposition: S - [2(x-1)]/[x(2x-30] dx
2((ln(x))/3 +1/6 ln(2x-3)) +C
Integrate using partial fraction decomposition: S [2(x-1)]/[x(3x^2 +8x+4)] dx
2(- (ln(x))/4 - 3/8 ln(x+2) +5/8 ln (3x+2)) +C
Integrate using partial fraction decomposition: S 2/[x(6x^2 +5x -6)] dx
2(- (ln(x))/6 + 2/39 ln(2x + 3) + 3/26 ln(3x-2)) +C
Integrate using partial fraction decomposition: S 2/[x(x^2 -x-6)] dx
2(-1/15 ln(x-3) +(ln(x)/6 - 1/10 ln(x+2)) +C
Integrate using partial fraction decomposition: S [2(x-1)]/[x(2x^2 -7x+3)] dx
2(2/15 ln(x-3)+(ln(x))/3 +1/5 ln(2x-1)) +C
Integrate using partial fraction decomposition: S [2(x-1)]/[x(x+2)] dx
2(3/2 ln(x+2) - (ln(x))/2) +C
Use substitution to integrate the given funtion: S sqrt(2-6x) xdx
2/135 sqrt(2-6x) (3x-1)(9x+2)+C
Use substitution to integrate the given funtion: S x/sqrt(-7x-8) dx
2/147 sqrt(-7x-8) (16-7x) +C
Use substitution to integrate the given funtion: S x/sqrt(3x-5) dx
2/27 sqrt(3x-5) (3x+10)+C
Integrate using partial fraction decomposition: S (x-1)/(x-3)x dx
2/3 ln(x-3)+(ln(x))/3 +C
Use substitution to integrate the given funtion: S x sqrt(9x +9) dx
2/5 (x+1)^3/2 (3x-2) +C
Use substitution to integrate the given funtion: S x/sqrt(-5x -1) dx
2/75 sqrt(-5x-1) (2-5x)+C
Integrate using partial fraction decomposition: S - [2(x+1)]/x^2 dx
2/x -2ln(x) +C
Find the double Integral: S-2,-3 S0,-1 x^2 + y^2 dydx
20 / 3
Evaluate the integral: S2,-1 -7x dx
21 / 2
Evaluate the integral: S5,-1 5x62 dx
210
Find the double Integral: S9,0 S16,4 sqrt y dxdy
216
Find the double Integral: S9,4 S9,1 sqrt 4 dydx
260 / 3
find the double integral: S0,-3 S3,0 ydydx
27 / 2
Find the double Integral: S0,-1 S3,1 x^2 +y^2 dxdy
28 / 3
Find the double Integral: S1,0 S-1,-3 x^2 + y^2 dxdy
28 / 3
Integrate using partial fraction decomposition: S (2-x)/[x(x+1)^2] dx
2ln(x) - 2ln(x+1) + 3/(x+1) +C
Integrate using partial fraction decomposition: S (2-x)/ [x(x+1)] dx
2ln(x) - 3ln(x+1) +C
Integrate using partial fraction decomposition: S (-x-2)/(x-1)x dx
2ln(x) - 3ln(x-1) +C
Integrate using partial fraction decomposition: S (x-2)/(x-1)x dx
2ln(x) - ln(x-1) +C
Find the double Integral: S0,-3 S0,-1 e^x dxdy
3- (3 / e)
Partial fractions Integration: S 3/(x^2 -9) dx
3/2 ln|x-3| + 3/2 ln|x+3| +C
Find the double Integral: S3,1 S2,-1 x62 +y^2 dydx
32
S243,0 3 ^5sqrt(x^4) dx
32805
Find the double Integral: S36,0 S36,9 sqrt y dxdy
3888
Partial fractions Integration: S 3x/(x62 -6x +9) dx
3ln|x-3| - 3/(x-3) +C
Find the double Integral: S-1,-2 S3,-1 xdxdy
4
Find the double Integral: S0,-1 S2, -1 x^2 +y^2 dxdy
4
Find the double Integral: S1,0 S4,0 xydydx
4
Evaluate the integral: S3,-3 -2/x^2 dx
4 / 3
Find the double Integral: S1,-2 S3,-1 e^x dydx
4(-(1/e^2)+e)
Integrate using partial fraction decomposition: S (x+1)/[(x-3)x] dx
4/3 ln(x-3) - (ln(x))/3 +C
Find the double Integral: S1,-1 S3,-1 6dxdy
48
Find the double Integral: S4,0 S5,1 ydydx
48
Find the double Intergral: S2,-2 S3,0 4dxdy
48
Find the double Integral: S4,1 S2,-1 xy dxdy
48 / 4
Use substitution to integrate the given funtion: S (10x-15)/(x^2 -3x -7) dx
5ln(x^2 -3x-7) +C
Evaluate the integral: S5,1 6/x^3 dx
72 / 25
Use Lagrange Multipliers to find the indicated Extrema: Maximize f(x,y,z)=xyz subject to x + y + z - 6=0
8
Use Lagrange Multipliers to find the indicated Extrema: Minimize f(x,y) = x^2 + y^2 subject to x + y=4
8
Find the double integral: S2,-2 S1,-3 e^x dydx
8 sinh(2)
Find the double Integral: S2,-1 S4,1 xdydx
9 / 2
Find the double Integral: S4,1 S4,1 10dydx
90
Find the double Integral: S25,1 S16,4 sqrt y dxdy
992
Use substitution to integrate the given funtion: S (144x +27)/(8x^2 +3x +1) dx
9ln(8x^2 +3x +1)+C
Find a and b so that f(x) = ax + b has a minimum sum of squared errors for the points (-3,0), (-1,1), (1,1),(3,2)
a = 3 / 10 and b = 1
Find a and b so that f(x) = ax + b has a minimum sum of squared errors for the points (2,4), (3,5), (4,7)
a = 3 / 2 and b = 5 / 6
Integration by Parts: S xe^x dx
e^x (x-1) +C
Find the derivative of the function: f(x) = 4e^-2x
f'(x) = - 8e^-2x
Find the derivative of the function: f(x) = -8e^2x
f'(x) = -16e^2x
Find the derivative of the function: f(x) = 7e^(2x^2)
f'(x) = -28xe^(-2x^2)
Find the derivative of the function: f(x) = 8e^(-4x^2)
f'(x) = -64xe^(-4x^2)
Find the derivative of the function: f(x) = -6e^-2x
f'(x) = 12e^-2x
Find the derivative of the function: f(x) = 9e^-3x
f'(x) = 27e^-3x
Find the Indefinite Integral: S x^2 / (x+1)^3 dx
ln |x+1| + 2/(x+1) - 1/2(x+1)^2 +C
Integration by Parts: S lnx dx
x ln(x) - x+C
Find the Extrema using the first partials test: f(x,y)= xy - (1/4)x^4 - (1/4)y^4
x= 1,0,1 and y=1,0,1
Find the derivative of the function: y= sqrt(13x^2 +10x)
y' = (13x +5)/sqrt(13x^2 +10x)
Find the derivative of the function: y= ^3sqrt(15z62 +15)
y' = (2 ^3sqrt5 z)/[3^(2/3) (z^2 +1)^(2/3)]
Find the derivative of the function: y= ^5sqrt y (10y^2 +5)
y' = (22y^2 +1)/y^(4/5)
Find the derivative of the function: y = ln{ (2x-1)/x^3}
y' = (3-4x)/(x-2x^2)
Find the derivative of the function: y= ^4sqrty (6y +11)
y' = (30y + 11)/4y^(3/4)
Find the derivative of the function: y= ^4sqrt x (5x^2 +3x +7)
y' = (45x^2 +15x +7)/ 4x^(3/4)
Find the derivative of the function: y= (9-7z)/(8z+5)
y' = - 107/(8z +5)^2
Find the derivative of the function: y= (5-4x)/(8x-4)
y' = - 3/(2(2x - 1)^2)
Find the derivative of the function: y= ln{ [(7x-1)^5] / 256x^4 }
y' = -(7x+4)/(x-7x^2)
Find the derivative of the function: y= -3z
y' = -3
Find the derivative of the function: y= (5z +5)/(6z -6)
y' = -5/[3(z-1)^2]
Find the derivative of the function: y= (3z +4) / (9z -7)
y' = -57/(9z - 7)^2
Find the derivative of the function: y = ln{ 1/(7x -2)^2}
y' = 14/2-7x
Find the derivative of the function: y= ln{ (2x-2)^5 /(5x-2)^2
y' = 15x / (5x^2 -7x + 2)
Find the derivative of the function: y= ^5sqrtz (x+9)
y' = 3(2z +3)/5z^(4/5)
Find the derivative of the function: y= ^5sqrtz (x+9)
y' = 3(2z+3)/5z^(4/5)
Find the derivative of the function: y= ^4sqrt x (6x +6)
y' = 3(5x +1)/2x^(3/4)
Find the derivative of the function: y=^4sqrtx (6x +6)
y' = 3(5x+1)/2x^(3/4)
Find the derivative of the function: y= sqrt(10x +14)
y' = 5/(sqrt2 sqrt(5x+7))
Find the derivative of the function: y= (5y-8)/(7y+4)
y' = 76/(7y +4)^2
Find the derivative of the function: y= ln{ (8x+2)^3 / (4x+2)}
y' = [2(8x+5)] / (8x^2 +6x +1)
Find the derivative of the function: y= 10/x
y'= - 10/x^2
Find the derivative of the function: y= -9 ^5sqrt y
y'= - 9/5y^(4/5)
Find the derivative of the function: y= 3/x^5
y'= -15/x^6
Find the derivative of the function: y= -6z^4 +4z^3 -8z^2 +5z -8
y'= -24z^3 + 12z^2 - 16z + 5
Find the derivative of the function: y= -2z^2
y'= -4z
Find the derivative of the function: y= 6/z
y'= -6/z^2
Find the derivative of the function: y= (5z+4) / (8z-9)
y'= -77 / (8z-9)^2
Find the derivative of the function: y= -5z^2
y'= 10z
Find the derivative of the function: y= ^5sqrt(3z^2 +16z +2)
y'= 2(3z+8)/5(3z62 +16z +2)^(4/5)
Find the derivative of the function: y= -9/z^3
y'= 27/z^4
Find the derivative of the function: y= (8-6x)/(2x-9)
y'= 38/(2x-9)^2
Find the derivative of the function: y= -19z^4 + 4z + 12
y'= 4-76z^3
Find the derivative of the function: y=8sqrt y
y'= 4/sqrt y
Find the derivative of the function: y= 10x^4 -x^3 -7x
y'= 40x^3 -3x^2 -7
Find the derivative of the function: y= 10y^4 -11y^2 -3y-15
y'= 40y^3 -22y-3
Find the derivative of the function: y= 14y^4 +7y^3 +9y -9
y'= 56y^3 +21y^2 +9
Find the derivative of the function: y= -12z^3 -2z^2 -7z +9
y'=-36z^2 -4z -7
Find the derivative of the function: y= -8/x^3
y'=24/x^4
Find the derivative of the function: y=3y
y'=3
Find the derivative of the function: y=2z^3
y'=6z^2
Find the Indicated partial derivative: z= -5e^(y^3) x ; zx
zx= -5e^(y^3)
Find the Indicated partial derivative: z=ln(xy^2) ; zx
zx= 1 / x
Find the Indicated partial derivative: z= ln(x^2 y^4) ; zx
zx= 2 / x
Find the Indicated partial derivative: z=ln(x^2 y^2); zx
zx= 2 / x
Find the Indicated partial derivative: z=x^2 - 12yx +4y^2 ; zx
zx= 2x -12y
Find the Indicated partial derivative: ln((x^3)y^3) ; zx
zx= 3 / x
Find the Indicated partial derivative: z= -x^2 +yx +2y^2 ; zx
zx=y-2x
Find the Indicated partial derivative: z= -12e^(x^4) y ;zxx
zxx= -192e^(x^4) yx^6 -144e^(x^4) yx^2
Find the Indicated partial derivative: z= -12x^2 +11yx -2y^2 ; zxx
zxx= -24
Find the Indicated partial derivative: z= -4x^2 y^4 - xy^3 ; zxx
zxx= -8y^4
Find the Indicated partial derivative: z= 11e^(y^4) x ; zxx
zxx= 0
Find the Indicated partial derivative: z=6x^2 +10yx -5y^2 ; zxy
zxy= 10
Find the Indicated partial derivative: z=11(x^4)(y^4) + 3(x^2)y ; zxy
zxy= 176(x^3)(y^3) +6x
Find the Indicated partial derivative: z=xy^2 -11xy^4 ; zxy
zxy= 2y - 44y^3
Find the Indicated partial derivative: z=11e^(x^2) y^2 ; zxy
zxy= 44e^(x^2) xy
Find the Indicated partial derivative: z=-2e^(y^2)x^2 ; zxy
zxy=-8e^(y^2)xy
Find the Indicated partial derivative: z=ln(x^3 y); zxy
zxy=0
Find the Indicated partial derivative: z=-7(y^3)(x^4) -3(y^4)(x^3) ; zy
zy= -21(y^2)(x^4) -12(y^3)(x^3)
Find the Indicated partial derivative: -7e^(y^4) x^2 ; zy
zy=28e^(y^4) x^2 y^3
Find the Indicated partial derivative: z=10e^(y^3) x ; zy
zy=30e^(y^3) xy^2
Find the Indicated partial derivative: z=(x^4)(y^4) ; zy
zy=4((x^4)(y^3))
Find the Indicated partial derivative: z=-8x^2 +yx-3y^2 ; zy
zy=x-6y
Find the Indicated partial derivative: z=ln(x^3 y^4); zyy
zyy= - 4 / y^2
Find the Indicated partial derivative: z= -10e^(x^4) y^2 ; zyy
zyy=-20e^(x^4)
Find the Indicated partial derivative: z=4e^(x^4) y ; zyy
zyy=0