Chapter 16 and 17 AP BIO FINAL
A transcription unit that is 8,000 nucleotides long may use 1,200 nucleotides to make a protein consisting of approximately 400 amino acids. This is best explained by the fact that A) many noncoding stretches of nucleotides are present in mRNA. B) there is redundancy and ambiguity in the genetic code. C) many nucleotides are needed to code for each amino acid. D) nucleotides break off and are lost during the transcription process. E) there are termination exons near the beginning of mRNA.
A
What are polyribosomes? A) groups of ribosomes reading a single mRNA simultaneously B) ribosomes containing more than two subunits C) multiple copies of ribosomes associated with giant chromosomes D) aggregations of vesicles containing ribosomal RNA E) ribosomes associated with more than one tRNA
A
What is a ribozyme? A) an enzyme that uses RNA as a substrate B) an RNA with enzymatic activity C) an enzyme that catalyzes the association between the large and small ribosomal subunits D) an enzyme that synthesizes RNA as part of the transcription process E) an enzyme that synthesizes RNA primers during DNA replication
B
A particular triplet of bases in the coding sequence of DNA is AAA. The anticodon on the tRNA that binds the mRNA codon is A) TTT. B) UUA. C) UUU. D) AAA. E) either UAA or TAA, depending on first base wobble.
C
Each of the following options is a modification of the sentence THECATATETHERAT. Which of the following is analogous to a single substitution mutation? A) THERATATETHECAT B) THETACATETHERAT C) THECATARETHERAT D) THECATATTHERAT E) CATATETHERAT
C
When a tRNA molecule is shown twisted into an L shape, the form represented is A) its linear sequence. B) its 2-dimensional shape. C) its 3-dimensional shape. D) its microscopic image.
C
In an analysis of the nucleotide composition of DNA, which of the following will be found? A) A = C B) A = G and C = T C) A + C = G + T d) G+C=T+A
C (A + C = G + T )
The nitrogenous base adenine is found in all members of which group? A) proteins, triglycerides, and testosterone B) proteins, ATP, and DNA C) ATP, RNA, and DNA D) alpha glucose, ATP, and DNA E) proteins, carbohydrates, and ATP
C (ATP, RNA, and DNA)
What determines the nucleotide sequence of the newly synthesized strand during DNA replication? A) the particular DNA polymerase catalyzing the reaction B) the relative amounts of the four nucleoside triphosphates in the cell C) the nucleotide sequence of the template strand D) the primase used in the reaction E) the arrangement of histones in the sugar phosphate backbone
C (the nucleotide sequence of the template strand)
Once transcribed, eukaryotic mRNA typically undergoes substantial alteration that includes A) union with ribosomes. B) fusion into circular forms known as plasmids. C) linkage to histone molecules. D) excision of introns. E) fusion with other newly transcribed mRNA.
D
Which component of the complex described enters the exit tunnel through the large subunit of the ribosome? A) tRNA with attached lysine (#1) B) tRNA with polypeptide (#2) C) tRNA that no longer has attached amino acid D) newly formed polypeptide E) initiation and elongation factors
D
Which of the following help to hold the DNA strands apart while they are being replicated? A) primase B) ligase C) DNA polymerase D) single-strand binding proteins E) exonuclease
D (single-strand binding proteins)
Which of the following synthesizes short segments of RNA? A) helicase B) DNA polymerase III C) ligase D) DNA polymerase I E) primase
E (primase)
Cytosine makes up 38% of the nucleotides in a sample of DNA from an organism. Approximately what percentage of the nucleotides in this will be thymine? a) 12 b)24 c)31 d) 38 e) cannot be determined
a (12)
what kind of chemical bond is found between paired bases of the DNA double helix? A) hydrogen B) ionic C) covalent D) sulfhydryl E) phosphate
A (hydrogen)
Accuracy in the translation of mRNA into the primary structure of a polypeptide depends on specificity in the A) binding of ribosomes to mRNA. B) shape of the A and P sites of ribosomes. C) bonding of the anticodon to the codon. D) attachment of amino acids to tRNAs. E) both C and D
E
RNA polymerase moves in which direction along the DNA? A) 3ʹ → 5ʹ along the template strand B) 3ʹ → 5ʹ along the coding (sense) strand C) 5ʹ → 3ʹ along the template strand D) 3ʹ → 5ʹ along the coding strand E) 5ʹ → 3ʹ along the double-stranded DNA
A
The TATA sequence is found only several nucleotides away from the start site of transcription. This most probably relates to which of the following? A) the number of hydrogen bonds between A and T in DNA B) the triplet nature of the codon C) the ability of this sequence to bind to the start site D) the supercoiling of the DNA near the start site E) the 3-dimensional shape of a DNA molecule
A
A particular triplet of bases in the template strand of DNA is 5ʹ AGT 3ʹ. The corresponding codon for the mRNA transcribed is A) 3ʹ UCA 5ʹ B) 3ʹ UGA 5ʹ C) 5ʹ TCA 3ʹ D) 3ʹACU 5ʹ E) either UCA or TCA, depending on wobble in the first base
A (3ʹ UCA 5ʹ)
Which of the following separates the DNA strands during replication? A) helicase B) DNA polymerase III C) ligase D) DNA polymerase I E) primase
A (primase)
Each eukaryotic mRNA, even after post-transcriptional modification, includes 5ʹ and 3ʹ UTRs. Which are these? A) the cap and tail at each end of the mRNA B) the untranslated regions at either end of the coding sequence C) the U attachment sites for the tRNAs D) the U translation sites that signal the beginning of translation E) the U — A pairs that are found in high frequency at the ends
B
The tRNA shown in Figure 17.4 has its 3ʹ end projecting beyond its 5ʹ end. What will occur at this 3ʹ end? A) The codon and anticodon complement one another. B) The amino acid binds covalently. C) The excess nucleotides (ACCA) will be cleaved off at the ribosome. D) The small and large subunits of the ribosome will attach to it. E) The 5ʹ cap of the mRNA will become covalently bound.
B
There are 61 mRNA codons that specify an amino acid, but only 45 tRNAs. This is best explained by the fact that A) some tRNAs have anticodons that recognize four or more different codons. B) the rules for base pairing between the third base of a codon and tRNA are flexible. C) many codons are never used, so the tRNAs that recognize them are dispensable. D) the DNA codes for all 61 tRNAs but some are then destroyed. E) competitive exclusion forces some tRNAs to be destroyed by nucleases.
B
What are the coding segments of a stretch of eukaryotic DNA called? A) introns B) exons C) codons D) replicons E) transposons
B
Which of the following types of mutation, resulting in an error in the mRNA just after the AUG start of translation, is likely to have the most serious effect on the polypeptide product? A) a deletion of a codon B) a deletion of 2 nucleotides C) a substitution of the third nucleotide in an ACC codon D) a substitution of the first nucleotide of a GGG codon E) an insertion of a codon
B
Of the following, which is the most current description of a gene? A) a unit of heredity that causes formation of a phenotypic characteristic B) a DNA subunit that codes for a single complete protein C) a DNA sequence that is expressed to form a functional product: either RNA or polypeptide D) a DNA—RNA sequence combination that results in an enzymatic product E) a discrete unit of hereditary information that consists of a sequence of amino acids
C
What type of bonding is responsible for maintaining the shape of the tRNA molecule? A) covalent bonding between sulfur atoms B) ionic bonding between phosphates C) hydrogen bonding between base pairs D) van der Waals interactions between hydrogen atoms E) peptide bonding between amino acids
C
Which of the following help(s) to stabilize mRNA by inhibiting its degradation? A) TATA box B) spliceosomes C) 5ʹ cap and poly (A) tail D) introns E) RNA polymerase
C
Which of the following is (are) true of snRNPs? A) They are made up of both DNA and RNA. B) They bind to splice sites at each end of the exon. C) They join together to form a large structure called the spliceosome. D) They act only in the cytosol. E) They attach introns to exons in the correct order.
C
An Okazaki fragment has which of the following arrangements? A) primase, polymerase, ligase B) 3ʹ RNA nucleotides, DNA nucleotides 5ʹ C) 5ʹ RNA nucleotides, DNA nucleotides 3ʹ D) DNA polymerase I, DNA polymerase III E) 5ʹ DNA to 3ʹ
C (5ʹ RNA nucleotides, DNA nucleotides 3ʹ )
In a nucleosome, the DNA is wrapped around A) polymerase molecules. B) ribosomes. C) histones. D) a thymine dimer. E) satellite DNA.
C (histones)
Which of the following is a function of a signal peptide? A) to direct an mRNA molecule into the cisternal space of the ER B) to bind RNA polymerase to DNA and initiate transcription C) to terminate translation of the messenger RNA D) to translocate polypeptides across the ER membrane E) to signal the initiation of transcription
D
Why might a point mutation in DNA make a difference in the level of proteinʹs activity? A) It might result in a chromosomal translocation. B) It might exchange one stop codon for another stop codon. C) It might exchange one serine codon for a different serine codon. D) It might substitute an amino acid in the active site. E) It might substitute the N terminus of the polypeptide for the C terminus.
D
Which would you expect of a eukaryotic cell lacking telomerase? A) a high probability of becoming cancerous B) production of Okazaki fragments C) inability to repair thymine dimers D) a reduction in chromosome length E) high sensitivity to sunlight
D (a reduction in chromosome length)
Why does the DNA double helix have a uniform diameter? A) Purines pair with pyrimidines. B) C nucleotides pair with A nucleotides. C) Deoxyribose sugars bind with ribose sugars. D) Nucleotides bind with nucleosides. E) Nucleotides bind with nucleoside triphosphates.
a (purines pair with pyrimidines)
As a ribosome translocates along an mRNA molecule by one codon, which of the following occurs? A) The tRNA that was in the A site moves into the P site. B) The tRNA that was in the P site moves into the A site. C) The tRNA that was in the A site moves to the E site and is released. D) The tRNA that was in the A site departs from the ribosome via a tunnel. E) The polypeptide enters the E site.
A
The difference between ATP and the nucleoside triphosphates used during DNA synthesis is that A) the nucleoside triphosphates have the sugar deoxyribose; ATP has the sugar ribose. B) the nucleoside triphosphates have two phosphate groups; ATP has three phosphate groups. C) ATP contains three high-energy bonds; the nucleoside triphosphates have two. D) ATP is found only in human cells; the nucleoside triphosphates are found in all animal and plant cells. E) triphosphate monomers are active in the nucleoside triphosphates, but not in ATP.
A ( the nucleoside triposphates have the sugar deoxyribose; ATP has the sugar ribose)
Why do histones bind tightly to DNA? A) Histones are positively charged, and DNA is negatively charged. B) Histones are negatively charged, and DNA is positively charged. C) Both histones and DNA are strongly hydrophobic. D) Histones are covalently linked to the DNA. E) Histones are highly hydrophobic, and DNA is hydrophilic.
A (Histones are positively charged, and DNA is negatively charged.)
You briefly expose bacteria undergoing DNA replication to radioactively labeled nucleotides. When you centrifuge the DNA isolated from the bacteria, the DNA separates into two classes. One class of labeled DNA includes very large molecules (thousands or even millions of nucleotides long), and the other includes short stretches of DNA (several hundred to a few thousand nucleotides in length). These two classes of DNA probably represent A) leading strands and Okazaki fragments. B) lagging strands and Okazaki fragments. C) Okazaki fragments and RNA primers. D) leading strands and RNA primers. E) RNA primers and mitochondrial DNA.
A (leading strands and Okazaki fragments)
Which of the following represents the order of increasingly higher levels of organization of chromatin? A) nucleosome, 30-nm chromatin fiber, looped domain B) looped domain, 30-nm chromatin fiber, nucleosome C) looped domain, nucleosome, 30-nm chromatin fiber D) nucleosome, looped domain, 30-nm chromatin fiber E) 30-nm chromatin fiber, nucleosome, looped domain
A (nucleosome, 30-nm chromatin fiber, looped domain)
The leading and the lagging strands differ in that A) the leading strand is synthesized in the same direction as the movement of the replication fork, and the lagging strand is synthesized in the opposite direction. B) the leading strand is synthesized by adding nucleotides to the 3ʹ end of the growing strand, and the lagging strand is synthesized by adding nucleotides to the 5ʹ end. C) the lagging strand is synthesized continuously, whereas the leading strand is synthesized in short fragments that are ultimately stitched together. D) the leading strand is synthesized at twice the rate of the lagging strand.
A (the leading strand is synthesized in the same direction as the movement of the replication fork, and the lagging strand is synthesized in the opposite direction)
When translating secretory or membrane proteins, ribosomes are directed to the ER membrane by A) a specific characteristic of the ribosome itself, which distinguishes free ribosomes from bound ribosomes. B) a signal-recognition particle that brings ribosomes to a receptor protein in the ER membrane. C) moving through a specialized channel of the nucleus. D) a chemical signal given off by the ER. E) a signal sequence of RNA that precedes the start codon of the message.
B
Which of the following statements best describes the termination of transcription in prokaryotes? A) RNA polymerase transcribes through the polyadenylation signal, causing proteins to associate with the transcript and cut it free from the polymerase. B) RNA polymerase transcribes through the terminator sequence, causing the polymerase to fall off the DNA and release the transcript. C) RNA polymerase transcribes through an intron, and the snRNPs cause the polymerase to let go of the transcript. D) Once transcription has initiated, RNA polymerase transcribes until it reaches the end of the chromosome. E) RNA polymerase transcribes through a stop codon, causing the polymerase to stop advancing through the gene and release the mRNA.
B
A biochemist isolates and purifies various molecules needed for DNA replication. When she adds some DNA, replication occurs, but each DNA molecule consists of a normal strand paired with numerous segments of DNA a few hundred nucleotides long. What has she probably left out of the mixture? A) DNA polymerase B) DNA ligase C) nucleotides D) Okazaki fragments E) primase
B (DNA ligase)
Using RNA as a template for protein synthesis instead of translating proteins directly from the DNA is advantageous for the cell because A) RNA is much more stable than DNA. B) RNA acts as an expendable copy of the genetic material. C) only one mRNA molecule can be transcribed from a single gene, lowering the potential rate of gene expression. D) tRNA, rRNA and others are not transcribed. E) mRNA molecules are subject to mutation but DNA is not.
B (RNA acts as an expendable copy of the genetic material)
What is meant by the description ʺantiparallelʺ when talking about the strands that make up DNA? A) The twisting nature of DNA creates nonparallel strands. B) The 5ʹ to 3ʹ direction of one strand runs counter to the 5ʹ to 3ʹ direction of the other strand. C) Base pairings create unequal spacing between the two DNA strands. D) One strand is positively charged and the other is negatively charged. E) One strand contains only purines and the other contains only pyrimidines.
B (The 5ʹ to 3ʹ direction of one strand runs counter to the 5ʹ to 3ʹ direction of the other strand.)
Which of the following is true for both prokaryotic and eukaryotic gene expression? A) After transcription, a 3ʹ poly-A tail and a 5ʹ cap are added to mRNA. B) Translation of mRNA can begin before transcription is complete. C) RNA polymerase binds to the promoter region to begin transcription. D) mRNA is synthesized in the 3ʹ → 5ʹ direction. E) The mRNA transcript is the exact complement of the gene from which it was copied.
C (RNA polymerase binds to the promoter region to begin transcription)
Which of the following statements is true of chromatin? A) Heterochromatin is composed of DNA, whereas euchromatin is made of DNA and RNA. B) Both heterochromatin and euchromatin are found in the cytoplasm. C) Heterochromatin is highly condensed, whereas euchromatin is less compact. D) Euchromatin is not transcribed, whereas heterochromatin is transcribed. E) Only euchromatin is visible under the light microscope.
C (heterochromatin is highly condense, where as euchromatin is less compact)
What is the role of DNA ligase in the elongation of the lagging strand during DNA replication? A) synthesize RNA nucleotides to make a primer B) catalyze the lengthening of telomeres C) join Okazaki fragments together D) unwind the parental double helix E) stabilize the unwound parental DNA
C (join Okazaki fragments together)
Which of the following covalently connects segments of DNA? A) helicase B) DNA polymerase III C) ligase D) DNA polymerase I E) primase
C (ligase)
Which of the following removes the RNA nucleotides from the primer and adds equivalent DNA nucleotides to the 3ʹ end of Okazaki fragments? A) helicase B) DNA polymerase III C) ligase D) DNA polymerase I E) primase
D (DNA polymerase i)
In prophase I of meiosis in female Drosophila, studies have shown that there is phosphorylation of an amino acid in the tails of histones. A mutation in flies that interferes with this process results in sterility. Which of the following is the most likely hypothesis? A) These oocytes have no histones. B) Any mutation during oogenesis results in sterility. C) Phosphorylation of all proteins in the cell must result. D) Histone tail phosphorylation prohibits chromosome condensation. E) Histone tails must be removed from the rest of the histones.
D (Histone tail phosphorylation prohibits chromosome condensation)
In which of the following actions does RNA polymerase differ from DNA polymerase? A) RNA polymerase uses RNA as a template, and DNA polymerase uses a DNA template. B) RNA polymerase binds to single-stranded DNA, and DNA polymerase binds to double-stranded DNA. C) RNA polymerase is much more accurate than DNA polymerase. D) RNA polymerase can initiate RNA synthesis, but DNA polymerase requires a primer to initiate DNA synthesis. E) RNA polymerase does not need to separate the two strands of DNA in order to synthesize an RNA copy, whereas DNA polymerase must unwind the double helix before it can replicate the DNA.
D (RNA polymerase can initiate RNA synthesis, but DNA polymerase requires a primer to initiate DNA synthesis.)
A frameshift mutation could result from A) a base insertion only. B) a base deletion only. C) a base substitution only. D) deletion of three consecutive bases. E) either an insertion or a deletion of a base.
E
From the following list, which is the first event in translation in eukaryotes? A) elongation of the polypeptide B) base pairing of activated methionine-tRNA to AUG of the messenger RNA C) the larger ribosomal subunit binds to smaller ribosomal subunits D) covalent bonding between the first two amino acids E) the small subunit of the ribosome recognizes and attaches to the 5ʹ cap of mRNA
E
A new DNA strand elongates only in the 5ʹ to 3ʹ direction because A) DNA polymerase begins adding nucleotides at the 5ʹ end of the template. B) Okazaki fragments prevent elongation in the 3ʹ to 5ʹ direction. C) the polarity of the DNA molecule prevents addition of nucleotides at the 3ʹ end. D) replication must progress toward the replication fork. E) DNA polymerase can only add nucleotides to the free 3ʹ end.
E (DNA polymerase can only add nucleotides to the free 3' end)
Which of the following nucleotide triplets best represents a codon? A) a triplet separated spatially from other triplets B) a triplet that has no corresponding amino acid C) a triplet at the opposite end of tRNA from the attachment site of the amino acid D) a triplet in the same reading frame as an upstream AUG E) a sequence in tRNA at the 3ʹ end
d (a triplet in the same reading frame as an upstream AUG)
Which of the following statements describes the eukaryotic chromosome? A) It is composed of DNA alone. B) The nucleosome is its most basic functional subunit. C) The number of genes on each chromosome is different in different cell types of an organism. D) It consists of a single linear molecule of double-stranded DNA. E) Active transcription occurs on heterochromatin.
d (it consists of a single linear molecule of double-stranded DnA)