dynamics - physics final exam

¡Supera tus tareas y exámenes ahora con Quizwiz!

A person is running on a track. Which of the following forces propels the runner forward?

The force of friction exerted by the ground on the person

Students work together during an experiment about Newton's laws. The students use a setup that consists of a cart of known mass connected to one end of a string that is looped over a pulley of negligible friction, with its other end connected to a hanging mass. The cart is initially at rest on a horizontal surface and rolls without slipping when released. The inertia of the cart's wheels is negligible. Students have access to common laboratory equipment to make measurements of components of the system. By collecting the appropriate data, the students can determine the relationship between the acceleration of the cart and the net force exerted on the cart. Which of the following graphs should the students produce to show the correct relationship?

acceleration y axis, net force x axis, linear up

The force diagram above shows a box accelerating to the right on a horizontal surface of negligible friction. The tension T is exerted at an angle of 30° above the horizontal. If μ is the coefficient of kinetic friction between the box and the surface, which of the following is a correct mathematical equation derived by applying Newton's second law to the box?

ax= (Tcos(θ)−μ(Mg−Tsin(θ))/M

A 50.0 N box is at rest on a horizontal surface. The coefficient of static friction between the box and the surface is 0.50, and the coefficient of kinetic friction is 0.30. A horizontal 20.0 N force is then exerted on the box. The magnitude of the acceleration of the box is most nearly

0 m/s^2

An Atwood machine is set up by suspending two blocks connected by a string of negligible mass over a pulley, as shown in the figure above. The pulley has negligible mass but there is friction as it rotates. The system is released from rest, and after 1.0 s the speed of the 3 kg block is 1.8 m/s. Which of the following is the best estimate of the external frictional force acting on the two-block system?

1.0 N

The free body diagram shown above is for a 5 kg box on a rough surface being pulled to the right at a constant speed by a string that is at an angle of 30° above the horizontal. The coefficient of kinetic friction between the box and the surface is 0.30. The tension in this string is most nearly

14.47 N

The system shown above is released from rest. If friction is negligible, the acceleration of the 4.0 kg block sliding on the table shown above is most nearly

3.3 m/s^2

A block of mass 2 kg is suspended from a rope, as shown above. If the tension in the rope is 10 N, the acceleration of the block is most nearly

5 m/s^2

A block of mass 2 kg slides along a horizontal tabletop. A horizontal applied force of 12 N and a vertical applied force of 15 N act on the block, as shown above. If the coefficient of kinetic friction between the block and the table is 0.2, the frictional force exerted on the block is most nearly

7 N

Given the net forces on and the masses of the blocks shown above, which two blocks have the same acceleration? Select two answers.

Block A

An elevator carrying a person of mass m is moving upward and slowing down. How does the magnitude F of the force exerted on the person by the elevator floor compare with the magnitude mg of the gravitational force?

F < mg

The diagram above represents the forces exerted on a box that a child is holding. FN represents the force applied by the child's hand, and Fg represents the weight of the box. The child begins to raise the box with increasing speed. Which of the following claims is correct about force Fh that is exerted by the box on the child's hand as the box is being raised?

Fh=FN, where FN is larger as the box is being raised than when it was being held.

Three objects can only move along a straight, level path. The graphs below show the position d of each of the objects plotted as a function of time t. The sum of the forces on the object is zero in which of the cases?

I and II only

Two blocks are connected by a rope, as shown above. The masses of the blocks are 5 kg for the upper block and 10 kg for the lower block. An upward applied force of magnitude F acts on the upper block. If F=300 N, which of the following predictions about the acceleration of the two-block system is correct?

The acceleration is upward with a magnitude of gg.

Each of the figures above shows a tractor attached to an object. The tractor exerts the same constant force F on each object in every case. Which of the following is a true statement about an object and the relative magnitude of the force exerted by the object on the tractor?

The magnitude of the force exerted by each object on the tractor is equal, because the tractor exerts an equal force on each object.

(same lab as 5) The students double the mass that hangs from the string. They also replace the original cart with a new cart that has double the mass. By doubling both masses, how will the tension in the string and the acceleration of the cart change?

The tension will double, but the acceleration will stay the same.

A 0.5kg object is in free fall as it falls downward near the surface of a planet. A graph of the object's velocity as a function of time is shown. What is the force due to gravity exerted on the object by the planet?

1.25 N

An Atwood's machine is set up by suspending two blocks connected by a string of negligible mass over a pulley, as shown above. The blocks are initially held at rest and then released at time t0=0 s. The speed of the 3 kg block at time t1=2.0 s is most nearly

4.0 m/s

A block moving to the right on a level surface with friction is pulled by an increasing horizontal force also directed to the right. As the applied force increases, which of the following is true of the normal force and the frictional force on the block?

normal force remains constant, frictional force remains constant

The stacks of boxes shown in the figure above are inside an elevator that is moving upward. The masses of the boxes are given in terms of the mass M of the lightest box. Assume the elevator is moving at constant speed, and consider the bottom box in the stack that has two boxes of mass 2M. Let Ffloor be the force exerted by the floor on the box, Fg be the force exerted by gravity on the box, and Fbox be the force exerted by the top box on the bottom box. Which of the following best represents the forces exerted on the bottom box?

up forces: F floor down forces: Fg, F box


Conjuntos de estudio relacionados

7.15.R - Quiz: Russia & Central Asia

View Set

CCNA Chapter 10 (exam questions)

View Set

Chapter 7 - Federal Tax Considerations and Retirement Plans

View Set