MCC_Exam3

¡Supera tus tareas y exámenes ahora con Quizwiz!

13-33 It can be useful to analyze the steps of glycolysis with respect to the four basic types of enzymes required by this central catabolic pathway and to consider whether each enzyme produces or harvests the energy of an activated carrier. For each step of glycolysis (see Figure 13-5 or Panel 13-1), indicate which type of enzyme (of the four listed below and in Table 13-1 is required—or if none apply). Also, indicate whether an activated energy carrier is involved, and, if so, how. Step 1 ___________ Step 2 ___________ Step 3 ___________ Step 4 ___________ Step 5 ___________ Step 6 ___________ Step 7 ___________ Step 8 ___________ Step 9 ___________ Step 10 ___________ Enzyme types: kinase, isomerase, mutase, dehydrogenase

. Step 1 kinase, energy in the form of ATP consumed . Step 2 isomerase . Step 3 kinase, energy in the form of ATP consumed . Step 4 none of the above . Step 5 isomerase . Step 6 dehydrogenase, energy in the form of NADH produced . Step 7 kinase (catalyzing its reverse reaction)*; energy in the form of ATP produced . Step 8 mutase . Step 9 none of the above . Step 10 kinase (catalyzing its reverse reaction)*; energy in the form of ATP produced

15-30 Match the components involved with ER transport with the appropriate cellular location. Locations can be used more than once, or not at all. Components 1. signal-recognition particle _____ 2. protein translocator _____ 3. mRNA _____ 4. SRP receptor _____ active site of signal peptidase ____ Location A. cytosol B. ER lumen C. ER membrane

1-A, 2-C, 3-A, 4-C, 5-B

15-3 Name the membrane-enclosed compartments in a eukaryotic cell where each of the functions listed below takes place. 1. photosynthesis 2. transcription 3. oxidative phosphorylation 4. modification of secreted proteins 5. steroid hormone synthesis 6. degradation of worn-out organelles 7. new membrane synthesis 8. breakdown of lipids and toxic molecules

1. Chloroplast 2. nucleus 3. mitochondrion 4. smooth ER 5. smooth ER 6. lysosome 7. Golgi apparatus and RER 8. peroxisome

14-9 In which of the four compartments of a mitochondrion are each of the following located? porin the mitochondrial genome citric acid cycle enzymes proteins of the electron-transport chain A TP synthase membrane transport protein for pyruvate

A. Porin is in the outer membrane B. The mitochondrial genome is in the matrix. C. The citric acid cycle enzymes are in the matrix. D. The proteins of the electron-transport chain are in the inner membrane. E. ATP synthase is in the inner membrane. F. The transport protein for pyruvate is in the inner membrane.

11-26 Glycolipids are found on the surface of healthy cells, and contribute to the cell's defense against chemical damage and infectious agents. In which organelle are sugar groups added to membrane lipids? By what mechanism are glycolipids transported to the plasma membrane and presented to the extracellular environment? Draw a diagram to support your answer to part B.

A. The Golgi apparatus B. Membranes that contain newly synthesized glycolipids bud from the Golgi apparatus to form vesicles. These vesicles then fuse with the plasma membrane. The glycolipids that were facing the lumen of the Golgi will now face the extracellular environment (Figure A11-26).

12-40 For each of the following sentences, fill in the blank with the appropriate type of gating for the ion channel described. You can use the same type of gating mechanism more than once. A. The acetylcholine receptor in skeletal muscle cells is a(n) _________ ion channel. B . _________ ion channels are found in the hair cells of the mammalian cochlea. C. _________ ion channels in the mimosa plant propagate the leaf-closing response. D. _________ ion channels respond to changes in membrane potential. E. Many receptors for neurotransmitters are _________ ion channels.

A. ligand-gated B. stress-gated C. voltage-gated D. voltage-gated E. ligand-gated

13-36 In the reaction cycle involved in the oxidation of pyruvate, what are the advantages of having three enzyme activities contained in a single large complex instead of having three smaller and physically independent enzymes?

By co-localizing three enzyme activities in a large, layered complex, the substrates are already bound and properly positioned for rapid enzyme catalysis, and the free energy released by one reaction can be readily harnessed for the next.

Plasma membrane proteins are inserted into the membrane in the __________________. The address information for protein sorting in a eukaryotic cell is contained in the __________________ of the proteins. Proteins enter the nucleus in their __________________ form. Proteins that remain in the cytosol do not contain a __________________. Proteins are transported into the Golgi apparatus via __________________. The proteins transported into the endoplasmic reticulum by __________________ are in their __________________ form.

ER, amino acids, folded, sorting signal, transport vesicles, protein trans locator, unfolded

14-7 The citric acid cycle generates NADH and FADH2, which are then used in the process of oxidative phosphorylation to make ATP. If the citric acid cycle (which does not use oxygen) and oxidative phosphorylation are separate processes, as they are, then why is it that the citric acid cycle stops almost immediately when O2 is removed?

The citric acid cycle stops almost immediately when oxygen is removed because several steps in the cycle require the oxidized forms of NAD+ and FAD. In the absence of oxygen, these electron carriers can be reduced by the reactions of the citric acid cycle but cannot be reoxidized by the electron-transport chain that participates in oxidative phosphorylation.

12-4 Circle the molecule in each pair that is more likely to diffuse through the lipid bilayer. amino acids or Cl- or glycerol or benzene ethanol RNA D.H2O orO2 E. adenosine or A TP

The two basic properties governing the likelihood of whether a molecule will diffuse through a lipid bilayer are the size of the molecule and the charge of the molecule. A smaller molecule will be more likely to diffuse through the lipid bilayer than a larger molecule. A nonpolar (hydrophobic) molecule will be more likely to diffuse through the lipid bilayer than a polar molecule, which is more likely to diffuse through the lipid bilayer than a charged molecule. A. benzene (small nonpolar versus larger uncharged) B. ethanol (polar versus charged) C. glycerol (small polar versus very large, highly charged) D. O2 (nonpolar versus polar) E. adenosine (polar versus highly charged)

11-13 Which of the following phospholipid precursors is the most hydrophobic? (a) triacylglycerol (b) diacylglycerol (c) phosphate (d) glycerol

a

11-16 Water molecules readily form hydrogen bonds with other polar molecules, and when they encounter nonpolar molecules they must form hydrogen-bonding networks with neighboring water molecules. Which of the following molecules will cause a "cage" of water to form? (a) 2-methylpropane (b) acetone (c) methanol (d) urea

a

11-18 Membrane lipids are capable of many different types of movement. Which of these does not occur spontaneously in biological membranes? (a) switching between lipid layers (b) lateral movement (c) rotation (d) flexing of hydrocarbon chains

a

11-22 Most animal fats form a solid at room temperature, while plant fats remain liquid at room temperature. Which of the following is a feature of lipids in plant membranes that best explains this difference? (a) unsaturated hydrocarbons (b) longer hydrocarbon tails (c) higher levels of sterols (d) larger head groups

a

11-24 Membrane synthesis in the cell requires the regulation of growth for both halves of the bilayer and the selective retention of certain types of lipids on one side or the other. Which group of enzymes accomplishes both of these tasks? (a) flippases (b) phospholipases (c) convertases (d) glycosylases

a

11-28 A group of membrane proteins can be extracted from membranes only by using detergents. All the proteins in this group have a similar amino acid sequence at their C-terminus: -KKKKKXXC (where K stands for lysine, X stands for any amino acid, and C stands for cysteine). This sequence is essential for their attachment to the membrane. What is the most likely way in which the C-terminal sequence attaches these proteins to the membrane? (a) The cysteine residue is covalently attached to a membrane lipid. (b) The peptide spans the membrane as an α helix. (c) The peptide spans the membrane as part of a β sheet. (d) The positively charged lysine residues interact with an acidic integral membrane protein.

a

11-32 Porin proteins form large, barrel-like channels in the membrane. Which of the following is not true about these channels? (a) They are made primarily of α helices. (b) They are made primarily of β sheets. (c) They cannot form narrow channels. (d) They have alternating hydrophobic and hydrophilic amino acids.

a

11-4 Which type of lipids are the most abundant in the plasma membrane? (a) phospholipids (b) glycolipids (c) sterols (d) triacylglycerides

a

11-40 Plasma membranes are extremely thin and fragile, requiring an extensive support network of fibrous proteins. This network is called the ____________. (a) cortex. (b) attachment complex. (c) cytoskeleton. (d) spectrin.

a

11-44 The lateral movement of transmembrane proteins can be restricted by several different mechanisms. Which mechanism best describes the process by which a budding yeast cell designates the site of new bud formation during cell division? (a) proteins are tethered to the cell cortex (b) proteins are tethered to the extracellular matrix (c) proteins are tethered to the proteins on the surface of another cell (d) protein movement is limited by the presence of a diffusion barrier

a

11-50 Consider the apical location of a particular protein expressed in epithelial cells, illustrated in Figure Q11-50A. When a molecule that chelates calcium is added to the cell culture medium, you observe a redistribution of that protein around the entire cell, shown in Figure Q11-50B. Which is most likely to be true about the role of calcium in maintaining an apical distribution of protein A? Figure Q11-50 (a) calcium is required to maintain the structural integrity of the junctional complex (b) calcium is required for the binding of the junctional proteins to the cell cortex (c) calcium is a structural component of protein A (d) calcium inhibits intracellular transport of protein A

a

11-55 The endothelial cells found closest to the site of an infection express proteins called lectins. Each lectin binds to a particular ____________ that is presented on the surface of a target cell . (a) oligosaccharide (b) aminophospholipid (c) polysaccharide (d) sphingolipid

a

12-16 Transporters, in contrast to channels, work by ________________. (a) specific binding to solutes. (b) a gating mechanism. (c) filtering solutes by charge. (d) filtering solutes by size.

a

12-17 Pumps are transporters that are able to harness energy provided by other components in the cells to drive the movement of solutes across membranes, against their concentration gradient. This type of transport is called _____________. (a) active transport. (b) free diffusion. (c) facilitated diffusion. (d) passive transport.

a

12-2 Which of the following channels would not be expected to generate a change in voltage by movement of its substrate across the membrane where it is found? (a) an aquaporin (b) a sodium channel (c) a calcium channel (d) a proton channel

a

12-41 Voltage-gated channels contain charged protein domains, which are sensitive to changes in membrane potential. By responding to a threshold in the membrane potential, these voltage sensors trigger the opening of the channels. Which of the following best describes the behavior of a population of channels exposed to such a threshold? (a) Some channels remain closed and some open completely. (b) All channels open completely. (c) All channels open partly, to the same degree. (d) All channels open partly, each to a different degree.

a

12-5 We can test the relative permeability of a phospholipid bilayer by using a synthetic membrane that does not contain any protein components. Some uncharged, polar molecules are found to diffuse freely across these membranes, to varying degrees. Which of the following has the lowest rate of diffusion across an artificial membrane? Why? (a) glucose (b) water (c) glycerol (d) ethanol

a

12-56 Figure Q12-56 illustrates changes in membrane potential during the formation of an action potential. What membrane characteristic or measurement used to study action potentials is indicated by the arrow? Figure Q12-56 (a) effect of a depolarizing stimulus (b) resting membrane potential (c) threshold potential (d) action potential

a

12-59 The stimulation of a motor neuron ultimately results in the release of a neurotransmitter at the synapse between the neuron and a muscle cell. What type of neurotransmitter is used at these neuromuscular junctions? (a) acetylcholine (b) glutamate (c) GABA (d) glycine

a

12-9 Cells use membranes to help maintain set ranges of ion concentrations inside and outside the cell. Which of the following ions is the most abundant outside a typical mammalian cell? (a) Na+ (b) K+ (c) Ca2+ (d) Cl-

a

13-11 In step 4 of glycolysis, a six-carbon sugar (fructose 1,6-bisphosphate) is cleaved to produce two three-carbon molecules (dihydroxyacetone phosphate and glyceraldehyde 3-phosphate). Which enzyme catalyzes this reaction? (a) aldolase (b) phosphoglucose isomerase (c) enolase (d) triose phosphate isomerase

a

13-12 The conversion of glyceraldehyde 3-phosphate to 1,3 bisphosphoglycerate in step 6 of glycolysis generates a "high energy" phosphoanhydride bond. Which of the following best describes what happens to that bond in step 7? (a) It is hydrolyzed to drive the formation of ATP. (b) It is hydrolyzed to drive the formation of NADH. (c) It is hydrolyzed to generate pyruvate. (d) It is oxidized to CO2.

a

13-15 Several different classes of enzymes are needed for the catabolism of carbohydrates. Which of the following descriptions best matches the function of an isomerase? (a) An enzyme that catalyzes the rearrangement of bonds within a single molecule. (b) An enzyme that catalyzes a change in the position of a specific chemical group within a single molecule. (c) An enzyme that catalyzes the oxidation of a molecule by removing a hydride ion. (d) An enzyme that catalyzes the addition of phosphate groups to other molecules.

a

13-2 Glycolysis is an anaerobic process used to catabolize glucose. What does it mean for this process to be anaerobic? (a) no oxygen is required (b) no oxidation occurs (c) it takes place in the lysosome (d) glucose is broken down by the addition of electrons

a

13-23 What purpose does the phosphorylation of glucose to glucose 6-phosphate by the enzyme hexokinase serve as the first step in glycolysis? (a) It helps drive the uptake of glucose from outside the cell. (b) It generates a high-energy phosphate bond. (c) It converts ATP to a more useful form. (d) It enables the glucose 6-phosphate to be recognized by

a

13-25 Which of the following cells rely exclusively on glycolysis to supply them with A TP? (a) anaerobically growing yeast (b) aerobic bacteria (c) skeletal muscle cells (d) plant cells

a

13-27 Select the best option to fill in the blanks of the following statement: Fermentation is a/an _____________________ process that converts _____________ into carbon dioxide and _____________________. (a) anaerobic, pyruvate, ethanol (b) anaerobic, lactate, ethanol (c) eukaryotic, glyceraldehyde 3-phosphate, ethanol (d) prokaryotic, lactate, propanol

a

13-35 The citric acid cycle is a critical sequence of reactions for energy production, which take place in the matrix of the mitochondria. The reaction cycle requires materials from the cytosol to be converted into acetyl CoA, which represents the starting point of a new cycle. Which of the following statements about acetyl CoA is true? (a) Amino acids can be converted into acetyl CoA. (b) Pyruvate is converted into acetyl CoA in the cytosol. (c) Triacylglycerol molecules are transported into the mitochondrial matrix and cleaved by lipases to produce acetyl CoA. (d) Oxaloacetate is converted directly into acetyl CoA to feed the citric acid cycle.

a

13-40 The citric acid cycle is a series of oxidation reactions that removes carbon atoms from substrates in the form of CO2. Where do the oxygen atoms in the carbon dioxide molecules come from? (a) water (b) phosphates (c) molecular oxygen (d) acetyl CoA

a

13-49 In step 4 of the citric acid cycle, the reduction of NAD+ to NADH is coupled to the generation of CO2 and the formation of a high-energy thioester bond. The energy of the thioester bond is harnessed in step 5. What is the energy used for? (a) to generate a molecule of GTP (b) to generate a molecule of ATP (c) to generate a proton gradient (d) to generate a molecule of NADH

a

13-54 The oxygen-dependent reactions required for cellular respiration were originally thought to occur in a linear pathway. By using a competitive inhibitor for one enzyme in the pathway, investigators discovered that these reactions occur in a cycle. What compound served as the inhibitor? (a) malonate (b) malate (c) fumarate (d) succinate

a

13-60 In the final stage of the oxidation of food molecules, a gradient of protons is formed across the inner mitochondrial membrane, which is normally impermeable to protons. If cells were exposed to an agent that causes the membrane to become freely permeable to protons, which of the following effects would you expect to observe? (a) The ratio of ATP to ADP in the cytoplasm would fall. (b) NADH would build up. (c) Carbon dioxide production would cease. (d) The consumption of oxygen would fall.

a

13-63 When glucose is being used up and not replaced from food intake, the blood sugar level can be maintained by synthesizing glucose from smaller molecules such as pyruvate or lactate. This process is called gluconeogenesis. Which organ is principally responsible for supplying glucose to the rest of the body when glucose reserves are low? (a) liver (b) pancreas (c) spleen (d) gall bladder

a

13-7 Foods are broken down into simple molecular subunits for distribution and use throughout the body. Which type of simple subunits, listed below, is used preferentially as an energy source? (a) simple sugars (b) proteins (c) free fatty acids glycerol

a

14-1 The link between bond-forming reactions and membrane transport processes in the mitochondria is called __________________. (a) chemiosmotic coupling. (b) proton pumping. (c) electron transfer. (d) A TP synthesis.

a

14-11 Which of the following statements describes the mitochondrial outer membrane? (a) It is permeable to molecules with molecular mass as high as 5000 daltons. (b) It contains transporters for ATP molecules. (c) It contains proteins that are released during apoptosis. It contains enzymes required for the oxidation of fatty acids.

a

14-43 Which ratio of NADH to NAD+ in solution will generate the largest positive redox potential? (a) 1:10 (b) 10:1 (c) 1:1 (d) 5:1

a

14-46 Electron-transfer reactions occur rapidly. Which of the following statements best describes how the diffusion of ubiquinone is controlled in order to ensure its proximity to the other enzyme complexes? (a) Ubiquinone is anchored directly in the inner mitochondrial membrane via its hydrocarbon tail, and can only diffuse laterally. (b) Ubiquinone is present at high concentrations, minimizing the impact of diffusion on the electron-transport chain. (c) Ubiquinone becomes covalently attached to the other enzyme complexes. (d) The intermembrane space in the mitochondrion is relatively small, and therefore the random diffusion of these molecules is not a problem.

a

14-5 Which of the following statements describes the phosphorylation event that occurs during the process known as oxidative phosphorylation? (a) A phosphate group is added to ADP. (b) ATP is hydrolyzed in order to add phosphate groups to protein substrates. (c) A phosphate group is added to molecular oxygen. (d) Inorganic phosphate is transported into the mitochondrial matrix, increasing the local phosphate concentration.

a

14-55 In stage 1 of photosynthesis, a proton gradient is generated and ATP is synthesized. Where do protons become concentrated in the chloroplast? (a) thylakoid space (b) stroma (c) inner membrane (d) thylakoid membrane

a

14-6 Modern eukaryotes depend on mitochondria to generate most of the cell's ATP. How many molecules of ATP can a single molecule of glucose generate? (a) 30 (b) 2 (c) 20 (d) 36

a

15-12 Proteins that are fully translated in the cytosol and lack a sorting signal will end up in ____. (a) the cytosol. (b) the mitochondria. (c) the interior of the nucleus. (d) the nuclear membrane.

a

15-14 What is the role of the nuclear localization sequence in a nuclear protein? (a) It is bound by cytoplasmic proteins that direct the nuclear protein to the nuclear pore. (b) It is a hydrophobic sequence that enables the protein to enter the nuclear membranes. (c) It aids in protein unfolding so that the protein can thread through nuclear pores. (d) It prevents the protein from diffusing out of the nucleus through nuclear pores.

a

15-16 A large protein that passes through the nuclear pore must have an appropriate _________. (a) sorting sequence, which typically contains the positively charged amino acids lysine and arginine. (b) sorting sequence, which typically contains the hydrophobic amino acids leucine and isoleucine. (c) sequence to interact with the nuclear fibrils. (d) Ran-interacting protein domain.

a

15-2 Which of the following statements about membrane-enclosed organelles is true? (a) In a typical cell, the area of the endoplasmic reticulum membrane far exceeds the area of plasma membrane. (b) The nucleus is the only organelle that is surrounded by a double membrane. (c) Other than the nucleus, most organelles are small and thus, in a typical cell, only about 10% of a cell's volume is occupied by membrane- enclosed organelles; the other 90% of the cell volume is the cytosol. (d) The nucleus is the only organelle that contains DNA.

a

15-21 Which of the following statements about peroxisomes is false? (a) Most peroxisomal proteins are synthesized in the ER. (b) Peroxisomes synthesize phospholipids for the myelin sheath. (c) Peroxisomes produce hydrogen peroxide. (d) Vesicles that bud from the ER can mature into peroxisomes.

a

15-31 Figure Q15-31 shows the organization of a protein that resides on the ER membrane. The N- and C-termini of the protein are labeled. Boxes 1, 2, and 3 represent membrane-spanning sequences. Non-membrane-spanning regions of the protein are labeled "X," "Y," and "Z." Figure Q15-31 Once this protein is fully translocated, where will region Y be? (a) in the cytoplasm (b) in the ER lumen (c) inserted into the ER membrane (d) degraded by signal peptidase

a

15-38 Which of the following statements about vesicle budding from the Golgi is false? (a) Clathrin molecules are important for binding to and selecting cargoes for transport. (b) Adaptins interact with clathrin. (c) Once vesicle budding occurs, clathrin molecules are released from the vesicle. (d) Clathrin molecules act at the cytosolic surface of the Golgi membrane.

a

15-56 Which of the following statements about secretion is true? (a) The membrane of a secretory vesicle will fuse with the plasma membrane when it discharges its contents to the cell's exterior. (b) Vesicles for regulated exocytosis will not bud off the trans Golgi network until the appropriate signal has been received by the cell. (c) The signal sequences of proteins destined for constitutive exocytosis ensure their packaging into the correct vesicles. (d) Proteins destined for constitutive exocytosis aggregate as a result of the acidic pH of the trans Golgi network.

a

15-61 Which of the following statements about phagocytic cells in animals is false? (a) Phagocytic cells are important in the gut to take up large particles of food. (b) Phagocytic cells scavenge dead and damaged cells and cell debris. (c) Phagocytic cells can engulf invading microorganisms and deliver them to their lysosomes for destruction. (d) Phagocytic cells extend pseudopods that surround the material to be ingested.

a

Which of the following phenomena will be observed if a cell's membrane is pierced? (a) the membrane reseals (b) the membrane collapses (c) a tear is formed (d) the membrane expands

a

11-56 You have isolated two mutants of a normally pear-shaped microorganism that have lost their distinctive shape and are now round. One of the mutants has a defect in a protein you call A and the other has a defect in a protein you call B. First, you grind up each type of mutant cell and normal cells separately and separate the plasma membranes from the cytoplasm, forming the first cell extract. Then you set aside a portion of each fraction for later testing. Next, you wash the remaining portion of the membrane fractions with a low concentration of urea (which will unfold proteins and disrupt their ability to interact with other proteins) and centrifuge the mixture. The membranes and their constituent proteins form a pellet, and the proteins liberated from the membranes by the urea wash remain in the supernatant. When you check each of the fractions for the presence of A or B, you obtain the results given below. Which of the following statements are consistent with your results (more than one answer may apply)? (a) Protein A is an integral membrane protein that interacts with B, a peripheral membrane protein that is part of the cell cortex. (b) Protein B is an integral membrane protein that interacts with A, a peripheral membrane protein that is part of the cell cortex. (c) Proteins A and B are both integral membrane proteins. (d) The mutation in A affects its ability to interact with B.

a and d

11-15 Where does most new membrane synthesis take place in a eukaryotic cell? (a) in the Golgi apparatus (b) in the endoplasmic reticulum (c) in the plasma membrane (d) in the mitochondria (e) on ribosomes

b

11-19 There are two properties of phospholipids that affect how tightly they pack together: the length of the hydrocarbon chain and the number of double bonds. The degree of packing, in turn, influences the relative mobility of these molecules in the membrane. Which of the following would yield the most highly mobile phospholipid (listed as number of carbons and number of double bonds, respectively)? (a) 24 carbons with 1 double bond (b) 15 carbons with 2 double bonds (c) 20 carbons with 2 double bonds (d) 16 carbons with no double bonds

b

11-2 The plasma membrane serves many functions, many of which depend on the presence of specialized membrane proteins. Which of the following roles of the plasma membrane could still occur if the bilayer were lacking these proteins? (a) intercellular communication (b) selective permeability (c) cellular movement (d) import/export of molecules

b

11-27 Membrane proteins, like membrane lipids, can move laterally by exchanging positions with other membrane components. Which type of membrane proteins is expected to be the least mobile, based on their function? (a) channels (b) anchors (c) receptors (d) enzymes

b

11-34 The amino acid sequences below represent the sequences of transmembrane helices. The characteristics of α helices that form a channel are different from those that form a single transmembrane domain. Select the helix that forms a single transmembrane domain. (a) VGHSLSIFTLVISLGIFVFF (b) IMIVLVMLLNIGLAILFVHF (c) ILHFFHQYMMACNYFWMLCE (d) VTLHKNMFLTYILNSMIIII

b

11-38 We know the detailed molecular structure and mechanism of action of the transmembrane protein bacteriorhodopsin. This protein uses sunlight as the source of energy to pump ______ out of the cell. (a) ATP (b) H+ (c) K+ (d) Na+

b

11-39 In the photosynthetic archaean Halobacterium halobium, a membrane transport protein called bacteriorhodopsin captures energy from sunlight and uses it to pump protons out of the cell. The resulting proton gradient serves as an energy store that can later be tapped to generate ATP. Which statement best describes how bacteriorhodopsin operates? (a) The absorption of sunlight triggers a contraction of the β barrel that acts as the protein's central channel, squeezing a proton out of the cell. (b) The absorption of sunlight triggers a shift in the conformation of the protein's seven, membrane spanning α helices, allowing a proton to leave the cell. (c) The absorption of sunlight triggers a restructuring of bacteriorhodopsin's otherwise unstructured core to form the channel through which a proton can exit the cell. (d) The absorption of sunlight triggers the activation of an enzyme that generates ATP.

b

11-45 The lateral movement of transmembrane proteins can be restricted by several different mechanisms. Which mechanism best describes the process by which focal adhesions are formed to promote cell motility? (a) proteins are tethered to the cell cortex (b) proteins are tethered to the extracellular matrix (c) proteins are tethered to the proteins on the surface of another cell (d) protein movement is limited by the presence of a diffusion barrier

b

11-49 Consider the apical location of a particular protein expressed in epithelial cells, illustrated in Figure Q11-49A. Which type of defect described below is the most likely to cause the redistribution of that protein around the entire cell, shown in Figure Q11-49B? Figure Q11-49 (a) a nonfunctional protein glycosylase (b) the deletion of a junctional protein (c) the truncation of a protein found in the extracellular matrix (d) a nonfunctional flippase

b

11-59 It is possible to follow the movement of a single molecule or a small group of molecules. This requires the use of antibodies linked to small particles of gold, which appear as dark spots when tracked through video microscopy. What is this method called? What does the abbreviation stand for? (a) SDS (b) SPT (c) GFP (d) FRAP

b

11-7 Formation of a lipid bilayer is energetically favorable. How does this arrangement result in higher entropy for the system, and thus make bilayer formation energetically favorable? (a) Polar head groups form a hydrogen-bonding network at the interface with water. (b) Water molecules form cagelike structures around hydrophobic molecules. (c) Hydrogen bonds form between neighboring polar head groups in the bilayer. (d) Fatty acid tails are highly saturated and flexible.

b

11-9 A bacterium is suddenly expelled from a warm human intestine into the cold world outside. Which of the following adjustments might the bacterium make to maintain the same level of membrane fluidity? (a) Produce lipids with hydrocarbon tails that are longer and have fewer double bonds. (b) Produce lipids with hydrocarbon tails that are shorter and have more double bonds. (c) Decrease the amount of cholesterol in the membrane. (d) Decrease the amount of glycolipids in the membrane.

b

12-14 Ion channels are classified as membrane transport proteins. Channels discriminate by size and charge. In addition to Na+, which one of the following ions would you expect to be able to freely diffuse through a Na+ channel? Explain your answer. (a) Mg2+ (b) H+ (c) K+ (d) Cl-

b

12-20 Active transport requires the input of energy into a system so as to move solutes against their electrochemical and concentration gradients. Which of the following is not one of the common ways to perform active transport? (a) Na+-coupled (b) K+-coupled (c) A TP-driven (d) light-driven

b

12-27 You have generated antibodies that recognize the extracellular domain of the Ca2+-pump. Adding these antibodies to animal cells blocks the active transport of Ca2+ from the cytosol into the extracellular environment. What do you expect to observe with respect to intracellular Ca2+? (a) Ca2+-pumps in vesicle membranes keep cytosolic calcium levels low. (b) Ca2+-pumps in the endoplasmic reticulum membrane keep cytosolic calcium levels low. (c) Ca2+-pumps in the Golgi apparatus keep cytosolic calcium levels low. (d) Ca2+ concentrations in the cytosol increase at a steady rate.

b

12-3 Although the extracellular environment has a high sodium ion concentration and the intracellular environment has a high potassium ion concentration, both must be neutralized by negatively charged molecules. In the extracellular case, what is the principal anion? (a) HCO3- (b) Cl- (c) PO43- (d) OH-

b

12-30 Ca2+-pumps in the plasma membrane and endoplasmic reticulum are important for _____________. (a) maintaining osmotic balance. (b) preventing Ca2+ from altering the activity of molecules in the cytosol. (c) providing enzymes in the endoplasmic reticulum with Ca2+ ions that are necessary for their catalytic activity. (d) maintaining a negative membrane potential.

b

12-35 Which of the following occur without coupling transport of the solute to the movement of a second solute? (a) import of glucose into gut epithelial cells (b) export of Ca2+ from the cytosol (c) export of H+ from animal cells for pH regulation (d) the export of Na+ from cells to maintain resting membrane potential

b

12-36 Which of the following best describes the behavior of a gated channel? (a) It stays open continuously when stimulated. (b) It opens more frequently in response to a given stimulus. (c) It opens more widely as the stimulus becomes stronger. (d) It remains closed if unstimulated.

b

12-44 The Nernst equation can be used to calculate the membrane potential based on the ratio of the outer and inner ion concentration. In a resting cell, membrane potential is calculated taking only K+ ions into account. What is V when Co = 15 mM and Ci = 106 mM? (a) 438.1 mV (b) -52.7 mV (c) 52.7 mV (d) -5.3 mV

b

12-45 When using the Nernst equation to calculate membrane potential, we are making several assumptions about conditions in the cell. Which of the following is not a good assumption? (a) The temperature is 37°C. (b) The plasma membrane is primarily permeable to Na+. (c) At rest, the interior of the cell is more negatively charged than the exterior. (d) K+ is the principal positive ion in the cell.

b

12-54 Figure Q12-54 illustrates changes in membrane potential during the formation of an action potential. What membrane characteristic or measurement used to study action potentials is indicated by the arrow? Figure Q12-54 effect of a depolarizing stimulus (b) resting membrane potential (c) threshold potential (d) action potential

b

12-62 Which of the following statements best reflects the nature of synaptic plasticity? (a) New synapses are created due to the postnatal generation of neurons. (b) Synaptic response changes in magnitude depending on frequency of stimulation. (c) There is a change in the type of neurotransmitter used at the synapse. (d) Neuronal connections are pruned during normal development.

b

12-8 Cells use membranes to help maintain set ranges of ion concentrations inside and outside the cell. Which of the following ions is the most abundant inside a typical mammalian cell? (a) Na+ (b) K+ (c) Ca2+ (d) Cl-

b

13-13 Steps 7 and 10 of glycolysis result in substrate-level phosphorylation. Which of the following best describes this process? (a) ATP is being hydrolyzed to phosphorylate the substrate. (b) The energy derived from substrate oxidation is coupled to the conversion of ADP to ATP. c. Two successive phosphates are transferred, first to AMP, then to ADP, finally forming ATP. d. The substrate is hydrolyzed using ATP as an energy source.

b

13-16 Several different classes of enzymes are needed for the catabolism of carbohydrates. Which of the following descriptions best matches the function of a mutase? (a) An enzyme that catalyzes the rearrangement of bonds within a single molecule. (b) An enzyme that catalyzes a change in the position of a specific chemical group within a single molecule. (c) An enzyme that catalyzes the oxidation of a molecule by removing a hydride ion. (d) An enzyme that catalyzes the addition of phosphate groups to other molecules.

b

13-30 The first energy-generating steps in glycolysis begin when glyceraldehyde 3- phosphate undergoes an energetically favorable reaction in which it is simultaneously oxidized and phosphorylated by the enzyme glyceraldehyde 3- phosphate dehydrogenase to form 1,3-bisphosphoglycerate, with the accompanying conversion of NAD+ to NADH. In a second energetically favorable reaction catalyzed by a second enzyme, the 1,3-bisphosphoglycerate is then converted to 3-phosphoglycerate, with the accompanying conversion of ADP to ATP. Which of the following statements is true about this reaction? (a) The reaction glyceraldehyde 3-phosphate1,3-bisphosphoglycerate should be inhibited when levels of NADH fall. (b) The ΔG° for the oxidation of the aldehyde group on glyceraldehyde 3- phosphate to form a carboxylic acid is more negative than the ΔG° for ATP hydrolysis. (c) The energy stored in the phosphate bond of glyceraldehyde 3-phosphate contributes to driving the reaction forward. (d) The cysteine side chain on the enzyme is oxidized by NAD+.

b

13-31 The simultaneous oxidation and phosphorylation of glyceraldehyde 3-phosphate forms a highly reactive covalent thioester bond between a cysteine side chain (reactive group -SH) on the enzyme (glyceraldehyde 3-phosphate dehydrogenase) and the oxidized intermediate (see arrow in Figure Q13-31A). If the enzyme had a serine (reactive group -OH) instead of a cysteine at this position, which could form only a much-lower-energy bond to the oxidized substrate (see arrow in Figure Q13-31B), how might this new enzyme act? Figure Q13-31 (a) It would oxidize the substrate and phosphorylate it without releasing it. (b) It would oxidize the substrate but not release it. (c) It would phosphorylate the substrate on the 2 position instead of the 1 position. (d) It would behave just like the normal enzyme.

b

13-41 Fatty acids can easily be used to generate energy for the cell. Which of the following fatty acids will yield more energy? Explain your answer. (a) CH3-CH2-CH2-CH2-CH2-CH2-CH2-CH=CH-COOH (b) CH3-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-COOH (c) CH3-CH=CH-CH2-CH2-CH2-CH2-CH=CH-COOH (d) CH3-CH2-CH2-CH2-CH2-CH2-CH2-COOH

b

13-50 Step 6 of the citric acid cycle is catalyzed by succinate dehydrogenase. Keeping in mind that dehydrogenases catalyze redox reactions, which are the products of the reaction in which succinate is oxidized? (a) fumarate, NADH (b) fumarate, FADH2 (c) fumarate, FADH2 (d) succinyl CoA, NADH

b

13-52 In the final step of the citric acid cycle, oxaloacetate is regenerated through the oxidation of malate and this is coupled with the production of which other molecule? (a) FADH (b) NADH (c) GTP (d) CO2

b

13-56 The oxygen-dependent reactions required for cellular respiration were originally thought to occur in a linear pathway. By using a competitive inhibitor for one enzyme in the pathway, investigators discovered that these reactions occur in a cycle. Which product in the reaction pathway builds up when the inhibitor is added? (a) citrate (b) succinate (c) fumarate (d) malate

b

13-66 Which of the following polymers of glucose is used as a vehicle to store energy reserves in animal cells? (a) glucagon (b) glycogen (c) starch (d) glycerol

b

13-69 In humans, glycogen is a more useful food-storage molecule than fat because _____________________. (a) a gram of glycogen produces more energy than a gram of fat. (b) it can be utilized to produce ATP under anaerobic conditions, whereas fat cannot. (c) it binds water and is therefore useful in keeping the body hydrated. for the same amount of energy storage, glycogen occupies less space in a cell than does fat.

b

13-70 The concentration of H+ ions inside the mitochondrial matrix is lower than it is in the cytosol or the mitochondrial intermembrane space. What would be the immediate effect of a membrane-permeable compound that carries and releases protons into the mitochondrial matrix? (a) inhibition of the electron-transport chain (b) inhibition of ATP synthesis (c) increased import of ADP into the matrix inhibition of the citric acid cycle

b

13-8 The final metabolite produced by glycolysis is ___________. (a) acetyl CoA. (b) pyruvate. (c) 3-phosphoglycerate. (d) glyceraldehyde 3-phosphate.

b

14-12 Which of the following statements describes the mitochondrial inner membrane? (a) It is permeable to molecules with molecular mass as high as 5000 daltons. (b) It contains transporters for ATP molecules. (c) It contains proteins that are released during apoptosis. (d) It contains enzymes required for the oxidation of fatty acids.

b

14-15 NADH contains a high-energy bond that, when cleaved, donates a pair of electrons to the electron-transport chain. What are the immediate products of this bond cleavage? (a) NAD+ + OH- (b) NAD+ + H- (c) NAD- + H+ (d) NAD + H

b

14-19 Osmosis describes the movement of water across a biological membrane and down its concentration gradient. In chemiosmosis, useful energy is harnessed by the cell from the movement of _______________ across the inner mitochondrial membrane into the matrix _________________ a concentration gradient. (a) ATP, against (b) protons, down (c) electrons, down (d) ADP, against

b

14-20 Which of the following components of the electron-transport chain does not act as a proton pump? (a) NADH dehydrogenase (b) cytochrome c (c) cytochrome c reductase (d) cytochrome c oxidase

b

14-24 Which of the following statements is true? (a) The NADH dehydrogenase complex can pump more protons than can the cytochrome b-c1 complex. (b) The pH in the mitochondrial matrix is higher than the pH in the intermembrane space. (c) The proton concentration gradient and the membrane potential across the inner mitochondrial membrane tend to work against each other in driving protons from the intermembrane space into the matrix. (d) The difference in proton concentration across the inner mitochondrial membrane has a much larger effect than the membrane potential on the total proton-motive force.

b

14-26 Which of the following types of ion movement might be expected to require co- transport of protons from the mitochondrial intermembrane space to the matrix, inasmuch as it could not be driven by the membrane potential across the inner membrane? (Assume that each ion being moved is moving against its concentration gradient.) import of Ca2+ into the matrix from the intermembrane space (b) import of acetate ions into the matrix from the intermembrane space (c) exchange of Fe2+ in the matrix for Fe3+ in the intermembrane space (d) exchange of ATP from the matrix for ADP in the intermembrane space

b

14-27 The mitochondrial ATP synthase consists of several different protein subunits. Which subunit binds to ADP + Pi and catalyzes the synthesis of ATP as a result of a conformational change? (a) transmembrane H+ carrier (b) F1 A TPase head (c) peripheral stalk (d) central stalk

b

14-40 Which of the following statements about "redox potential" is true? (a) Redox potential is a measure of a molecule's capacity to strip electrons from oxygen. (b) For molecules that have a strong tendency to pass along their electrons, the standard redox potential is negative. (c) The transfer of electrons from cytochrome c oxidase to oxygen has a negative redox potential. (d) A molecule's redox potential is a measure of the molecule's capacity to pass along electrons to oxygen.

b

14-45 Ubiquinone is one of two mobile electron carriers in the electron-transport chain. Where does the additional pair of electrons reside in the reduced ubiquinone molecule? (a) The electrons are added directly to the aromatic ring. (b) The electrons are added to each of two ketone oxygens on the aromatic ring. (c) The electrons are added to the hydrocarbon tail, which hides them inside the membrane bilayer. (d) Both electrons, and one proton, are added to a single ketone oxygen bound to the aromatic ring.

b

14-47 Which of the following reactions has a sufficiently large free-energy change to enable it to be used, in principle, to provide the energy needed to synthesize one molecule of ATP from ADP and Pi under standard conditions? See Table Q14-47. Recall that ΔG° = -n (0.023) ΔE0′, and ΔE0′ = E0′ (acceptor) - E0′ (donor). (a) the reduction of a molecule of pyruvate by NADH (b) the reduction of a molecule of cytochrome b by NADH (c) the reduction of a molecule of cytochrome b by reduced ubiquinone (d) the oxidation of a molecule of reduced ubiquinone by cytochrome c Table Q14-47

b

14-48 Cytochrome c oxidase is an enzyme complex that uses metal ions to help coordinate the transfer of four electrons to O2. Which metal atoms are found in the active site of this complex? (a) two iron atoms (b) one iron atom and one copper atom (c) one iron atom and one zinc atom (d) one zinc atom and one copper atom

b

14-59 In the electron-transport chain in chloroplasts, ________-energy electrons are taken from __________. (a) high; H2O. (b) low; H2O. (c) high; NADPH. (d) low; NADPH.

b

14-60 The photosystems in chloroplasts contain hundreds of chlorophyll molecules, most of which are part of _______________. (a) plastoquinone. (b) the antenna complex. (c) the reaction center. (d) the ferredoxin complex.

b

14-62 If you shine light on chloroplasts and measure the rate of photosynthesis as a function of light intensity, you get a curve that reaches a plateau at a fixed rate of photosynthesis, x, as shown in Figure Q14-62. x light intensity (no. of photons) Figure Q14-62 Which of the following conditions will increase the value of x? (a) increasing the number of chlorophyll molecules in the antenna complexes (b) increasing the number of reaction centers (c) adding a powerful oxidizing agent (d) decreasing the wavelength of light used

b

15-1 Which of the following statements about the endoplasmic reticulum (ER) is false? (a) The ER is the major site for new membrane synthesis in the cell. (b) Proteins to be delivered to the ER lumen are synthesized on smooth ER. (c) Steroid hormones are synthesized on the smooth ER. (d) The ER membrane is contiguous with the outer nuclear membrane.

b

15-20 Which of the following statements about transport into mitochondria and chloroplasts is false? a. The signal sequence on proteins destined for these organelles is recognized by a receptor protein in the outer membrane of these organelles. (b) After a protein moves through the protein translocator in the outer membrane of these organelles, the protein diffuses in the lumen until it encounters a protein translocator in the inner membrane. (c) Proteins that are transported into these organelles are unfolded as they are being transported. (d) Signal peptidase will remove the signal sequence once the protein has been imported into these organelles.

b

15-29 Which of the following statements is true? (a) Proteins destined for the ER are translated by a special pool of ribosomes whose subunits are always associated with the outer ER membrane. (b) Proteins destined for the ER translocate their associated mRNAs into the ER lumen where they are translated. (c) Proteins destined for the ER are translated by cytosolic ribosomes and are targeted to the ER when a signal sequence emerges during translation. (d) Proteins destined for the ER are translated by a pool of cytosolic ribosomes that contain ER-targeting sequences that interact with ER- associated protein translocators.

b

15-34 Figure Q15-34 shows the organization of a protein that normally resides in the plasma membrane. The boxes labeled 1 and 2 represent membrane-spanning sequences and the arrow represents a site of action of signal peptidase. Given this diagram, which of the following statements must be true? Figure Q15-34 (a) The N-terminus of this protein is cytoplasmic. (b) The C-terminus of this protein is cytoplasmic. (c) The mature version of this protein will span the membrane twice, with both the N- and C-terminus in the cytoplasm. (d) None of the above.

b

15-39 Molecules to be packaged into vesicles for transport are selected by ________. (a) clathrin. (b) adaptins. (c) dynamin. (d) SNAREs.

b

15-42 An individual transport vesicle_______ (a) contains only one type of protein in its lumen. (b) will fuse with only one type of membrane. (c) is endocytic if it is traveling toward the plasma membrane. (d) is enclosed by a membrane with the same lipid and protein composition as the membrane of the donor organelle.

b

15-51 Which of the following statements about the protein quality control system in the ER is false? (a) Chaperone proteins help misfolded proteins fold properly. (b) Proteins that are misfolded are degraded in the ER lumen. c. Protein complexes are checked for proper assembly before they can exit the ER. d. A chaperone protein will bind to a misfolded protein to retain it in the ER.

b

15-57 Figure Q15-57 shows the orientation of the Krt1 protein on the membrane of a Golgi-derived vesicle that will fuse with the plasma membrane. Figure Q15-57 Given this diagram, which of the following statements is true? (a) When this vesicle fuses with the plasma membrane, the entire Krt1 protein will be secreted into the extracellular space. (b) When this vesicle fuses with the plasma membrane, the C-terminus of Krt1 will be inserted into the plasma membrane. (c) When this vesicle fuses with the plasma membrane, the N-terminus of Krt1 will be in the extracellular space. (d) When this vesicle fuses with the plasma membrane, the N-terminus of Krt1 will be cytoplasmic.

b

15-64 You are working in a biotech company that has discovered a small-molecule drug called H5434. H5434 binds to LDL receptors when they are bound to cholesterol. H5434 binding does not alter the conformation of the LDL receptor's intracellular domain. Interestingly, in vitro experiments demonstrate that addition of H5434 increases the affinity of LDL for cholesterol and prevents cholesterol from dissociating from the LDL receptor even in acidic conditions. Which of the following is a reasonable prediction of what may happen when you add H5434 to cells? (a) Cytosolic cholesterol levels will remain unchanged relative to normal cells. (b) Cytosolic cholesterol levels will decrease relative to normal cells. (c) The LDL receptor will remain on the plasma membrane. (d) The uncoating of vesicles will not occur.

b

15-8 Which of the following statements is true? (a) Lysosomes are believed to have originated from the engulfment of bacteria specialized for digestion. (b) The nuclear membrane is thought to have arisen from the plasma membrane invaginating around the DNA. (c) Because bacteria do not have mitochondria, they cannot produce ATP in a membrane-dependent fashion. (d) Chloroplasts and mitochondria share their DNA.

b

11-14 Three phospholipids X, Y, and Z are distributed in the plasma membrane as indicated in Figure Q11-14. For which of these phospholipids does a flippase probably exist? Figure Q11-14 (a) X only (b) Z only (c) X and Y (d) Y and Z

c

11-23 New membrane phospholipids are synthesized by enzymes bound to the _____________ side of the _________________ membrane. (a) cytosolic, mitochondrial (b) luminal, Golgi (c) cytosolic, endoplasmic reticulum (d) extracellular, plasma

c

11-35 Unlike soluble, cytosolic proteins, membrane proteins are more difficult to purify. Which of the following substances is most commonly used to help purify a membrane protein? (a) high salt solution (b) sucrose (c) detergent (d) ethanol

c

11-46 The lateral movement of transmembrane proteins can be restricted by several different mechanisms. Which mechanism best describes the process by which neutrophils are recruited by endothelial cells? (a) proteins are tethered to the cell cortex (b) proteins are tethered to the extracellular matrix (c) proteins are tethered to the proteins on the surface of another cell (d) protein movement is limited by the presence of a diffusion barrier

c

11-48 The lateral movement of transmembrane proteins can be restricted by several different mechanisms. Which mechanism best describes the process by which an antigen-presenting cell triggers an adaptive immune response? (a) proteins are tethered to the cell cortex (b) proteins are tethered to the extracellular matrix (c) proteins are tethered to the proteins on the surface of another cell (d) protein movement is limited by the presence of a diffusion barrier

c

11-52 Which of the following statements about the carbohydrate coating of the cell surface is false? (a) It is not usually found on the cytosolic side of the membrane. (b) It can play a role in cell-cell adhesion. (c) The arrangement of the oligosaccharide side chains is highly ordered, much like the peptide bonds of a polypeptide chain. (d) Specific oligosaccharides can be involved in cell-cell recognition.

c

11-54 Both glycoproteins and proteoglycans contribute to the carbohydrate layer on the surface of the cell. Which of the following is not true of glycoproteins? (a) They can be secreted into the extracellular environment. (b) They have only one transmembrane domain. (c) They have long carbohydrate chains. (d) They are recognized by lectins.

c

11-8 Which of the following statements is true? (a) Phospholipids will spontaneously form liposomes in nonpolar solvents. (b) In eukaryotes, all membrane-enclosed organelles are surrounded by one lipid bilayer. (c) Membrane lipids diffuse within the plane of the membrane. (d) Membrane lipids frequently flip-flop between one monolayer and the other.

c

12-10 Cells use membranes to help maintain set ranges of ion concentrations inside and outside the cell. Which of the following negatively charged ions is not primarily used to buffer positive charges inside the cell? (a) PO43- (b) OH- (c) Cl- (d) HCO3-

c

12-12 Which of the following statements about resting membrane potential is not true? (a) The resting membrane potential for most animal cells is 0 mV, because the positive and negative ions are in balance. (b) The resting membrane potential for most animal cells is positive, because Na+ ions are so plentiful inside cells. (c) The resting membrane potential for most animal cells is negative, because the inside of the cell is more negatively charged than the outside of the cell. (d) At the resting membrane potential, no ions enter or exit the cell.

c

12-15 Some cells have aquaporins—channels that facilitate the flow of water molecules through the plasma membrane. For these cells, what regulates the rate and direction of water diffusion across the membrane? (a) aquaporin conformation (b) resting membrane potential (c) solute concentrations on either side of the membrane (d) availability of ATP

c

12-21 The Na+-K+ ATPase is also known as the Na+-K+ pump. It is responsible for maintaining the high extracellular sodium ion concentration and the high intracellular potassium ion concentration. What happens immediately after the pump hydrolyzes ATP? (a) Na+ is bound (b) ADP is bound (c) the pump is phosphorylated (d) the pump changes conformation

c

12-42 When the net charge on either side of the plasma membrane is zero, what else is true? (a) There is an equal number of K+ ions on each side of the plasma membrane. (b) The K+ leak channels are open. (c) The electrochemical potential across the membrane is zero. (d) The resting membrane potential is between -20 mV and -200 mV.

c

12-46 If Na+ channels are opened in a cell that was previously at rest, how will the resting membrane potential be affected? (a) The membrane potential is not affected by Na+. (b) It becomes more negative. (c) It becomes more positive. (d) It is permanently reset.

c

12-53 Figure Q12-53 illustrates changes in membrane potential during the formation of an action potential. What membrane characteristic or measurement used to study action potentials is indicated by the arrow? Figure Q12-53 (a) effect of a depolarizing stimulus (b) resting membrane potential (c) threshold potential (d) action potential

c

12-63 Approximately, how many distinct synapses are established on the dendrites and cell body of a motor neuron in the spinal cord? (a) tens (b) hundreds (c) thousands (d) millions

c

12-66 Which of the following gated ion channels are involved in inhibitory synaptic signaling? voltage-gated Na+ channels (b) voltage-gated Ca2+ channels (c) glycine-gated Cl- channels (d) glutamate-gated cation channels

c

13-10 Which of the following steps or processes in aerobic respiration include the production of carbon dioxide? (a) breakdown of glycogen (b) glycolysis (c) conversion of pyruvate to acetyl CoA (d) oxidative phosphorylation

c

13-17 Several different classes of enzymes are needed for the catabolism of carbohydrates. Which of the following descriptions best matches the function of a dehydrogenase? An enzyme that catalyzes the rearrangement of bonds within a single molecule. (b) An enzyme that catalyzes a change in the position of a specific chemical group within a single molecule. (c) An enzyme that catalyzes the oxidation of a molecule by removing a hydride ion. (d) An enzyme that catalyzes the addition of phosphate groups to other molecules.

c

13-22 Which reaction does the enzyme phosphoglucose isomerase catalyze? (a) glucose glucose 6-phosphate (b) fructose 6-phosphate fructose 1,6-bisphosphate (c) glucose 6-phosphate fructose 6-phosphate (d) glucose glucose 1-phosphate

c

13-26 In anaerobic conditions, skeletal muscle produces _____________. (a) lactate and CO2. (b) ethanol and CO2. (c) lactate only. (d) ethanol only.

c

13-29 Glyceraldehyde 3-phosphate dehydrogenase operates by stripping a hydride ion from its substrate. Which molecule is the recipient of the proton and two electrons during this transfer? (a) oxygen (b) acetyl CoA (c) NAD+ (d) FADH

c

13-39 The reaction cycle that uses acetyl CoA to generate electron carrier molecules needed in the electron-transport chain is important for powering the cell. Which of the names below is not one of those commonly used to describe this reaction cycle? (a) tricarboxylic acid cycle (b) Krebs cycle (c) oxaloacetic acid cycle (d) citric acid cycle

c

13-4 The advantage to the cell of the gradual oxidation of glucose during cellular respiration compared with its combustion to CO2 and H2O in a single step is that ________________. (a) more free energy is released for a given amount of glucose oxidized. (b) no energy is lost as heat. (c) energy can be extracted in usable amounts. (d) more CO2 is produced for a given amount of glucose oxidized.

c

13-45 In step 1 of the citric acid cycle, citrate is generated by the enzyme citrate synthase. The enzyme combines the two-carbon acetyl group from acetyl CoA and the four-carbon oxaloacetate. What is the source of energy that drives this reaction forward? (a) a high-energy phosphodiester bond (b) a transfer of high-energy electrons (c) a high-energy thioester bond (d) the heat of molecular collision

c

13-48 In step 4 of the citric acid cycle, the reduction of NAD+ to NADH is coupled to the generation of CO2 and the formation of a high-energy thioester bond. Which molecule provides the sulfhydryl group necessary to form the thioester bond? a. pyruvate (b) acetyl CoA (c) CoA (d) cysteine side chain in the catalytic pocket

c

13-61 Pyruvate is an important metabolic intermediate that can be converted into several other compounds, depending on which enzyme is catalyzing the reaction. Which of the following cannot be produced from pyruvate in a single enzyme-catalyzed reaction? (a) lactate (b) oxaloacetate (c) citrate (d) alanine

c

13-67 The intermediates of the citric acid cycle are constantly being depleted because they are used to produce many of the amino acids needed to make proteins. The enzyme pyruvate carboxylase converts pyruvate to oxaloacetate to replenish these intermediates. Bacteria, but not animal cells, have additional enzymes that can carry out the reaction acetyl CoA + isocitrateoxaloacetate + succinate. Which of the following compounds will not support the growth of animal cells when used as the major source of carbon in food, but will support the growth of nonphotosynthetic bacteria? (a) pyruvate (b) glucose (c) fatty acids (d) fructose

c

13-9 Glycolysis generates more stored energy than it expends. What is the net number of activated carrier molecules produced in this process (number and type of molecules produced minus the number of those molecules used as input)? (a) 6 ATP, 2 NADH (b) 4 ATP, 4 NADH (c) 2 ATP, 2 NADH (d) 4 ATP, 2 NADH

c

14-10 Which of the following statements about mitochondrial division is true? (a) Mitochondria divide in synchrony with the cell. (b) The rate of mitochondrial division is the same in all cell types. (c) Mitochondrial division is mechanistically similar to prokaryotic cell division. (d) Mitochondria cannot divide and produce energy for the cell at the same time.

c

14-13 Which of the following statements describes the mitochondrial intermembrane space? (a) It is permeable to molecules with molecular mass as high as 5000 daltons. (b) It contains transporters for ATP molecules. (c) It contains proteins that are released during apoptosis. (d) It contains enzymes required for the oxidation of fatty acids.

c

14-18 Stage 1 of oxidative phosphorylation requires the movement of electrons along the electron-transport chain coupled to the pumping of protons into the intermembrane space. What is the final result of these electron transfers? (a) OH- is oxidized to O2 (b) pyruvate is oxidized to CO2 (c) O2 is reduced to H2O (d) H- is converted to H2

c

14-23 In oxidative phosphorylation, ATP production is coupled to the events in the electron-transport chain. What is accomplished in the final electron-transfer event in the electron-transport chain? (a) OH- is oxidized to O2 (b) pyruvate is oxidized to CO2 (c) O2 is reduced to H2O (d) NAD+ is reduced to NADH

c

14-30 Bongkrekic acid is an antibiotic that inhibits the ATP/ADP transport protein in the inner mitochondrial membrane. Which of the following will allow electron transport to occur in mitochondria treated with bongkrekic acid? (a) placing the mitochondria in anaerobic conditions (b) adding FADH2 (c) making the inner membrane permeable to protons (d) inhibiting the ATP synthase

c

14-34 NADH and FADH2 carry high-energy electrons that are used to power the production of ATP in the mitochondria. These cofactors are generated during glycolysis, the citric acid cycle, and the fatty acid oxidation cycle. Which molecule below can produce the most ATP? Explain your answer. NADH from glycolysis (b) FADH2 from the fatty acid cycle (c) NADH from the citric acid cycle (d) FADH2 from the citric acid cycle

c

14-41 Which of the following statements is true? (a) Only compounds with negative redox potentials can donate electrons to other compounds under standard conditions. (b) Compounds that donate one electron have higher redox potentials than those compounds that donate two electrons. (c) The ΔE0′ of a redox pair does not depend on the concentration of each member of the pair. (d) The free-energy change, ΔG, for an electron-transfer reaction does not

c

14-52 Which of the following is not an electron carrier that participates in the electron- transport chain? (a) cytochrome (b) quinone (c) rhodopsin (d) copper ion

c

14-53 Which of the following statements about cytochrome c is true? (a) Cytochrome c shuttles electrons between the NADH dehydrogenase complex and cytochrome c reductase complex. (b) When cytochrome c becomes reduced, two cysteines (sulfur-containing amino acids) become covalently bound to a heme group. (c) The pair of electrons accepted by cytochrome c are added to the porphyrin ring of the bound heme group. (d) Cytochrome c is the last protein in the electron-transport chain, passing its electrons directly to molecular oxygen, a process that reduces O2 to H2O.

c

14-63 If you add a compound to illuminated chloroplasts that inhibits the NADP+ reductase, NADPH generation ceases, as expected. However, ferredoxin does not accumulate in the reduced form because it is able to donate its electrons not only to NADP+ (via NADP+ reductase) but also back to the cytochrome b6-f complex. Thus, in the presence of the compound, a "cyclic" form of photosynthesis occurs in which electrons flow in a circle from ferredoxin, to the cytochrome b6-f complex, to plastocyanin, to photosystem I, to ferredoxin. What will happen if you now also inhibit photosystem II? (a) Less ATP will be generated per photon absorbed. (b) A TP synthesis will cease. (c) Plastoquinone will accumulate in the oxidized form. (d) Plastocyanin will accumulate in the oxidized form. rate of photosynthesis (moles of O2 produced)

c

14-64 The enzyme ribulose bisphosphate carboxylase (Rubisco) normally adds carbon dioxide to ribulose 1,5-bisphosphate. However, it will also catalyze a competing reaction in which O2 is added to ribulose 1,5-bisphosphate to form 3- phosphoglycerate and phosphoglycolate. Assume that phosphoglycolate is a compound that cannot be used in any further reactions. If O2 and CO2 have the same affinity for Rubisco, which of the following is the lowest ratio of CO2 to O2 at which a net synthesis of sugar can occur? (a) 1:3 (b) 1:2 (c) 3:1 (d) 2:1

c

14-69 Oxidative phosphorylation, as it occurs in modern eukaryotes, is a complex process that probably arose in simple stages in primitive bacteria. Which mechanism is proposed to have arisen first as this complex system evolved? (a) electron transfers coupled to a proton pump (b) the reaction of oxygen with an ancestor of cytochrome c oxidase (c) ATP-driven proton pumps (d) the generation of ATP from the energy of a proton gradient

c

14-71 Which of the phylogenetic trees in Figure Q14-71 is the most accurate? (The mitochondria and chloroplasts are from maize, but they are treated as independent "organisms" for the purposes of this question.) Figure Q14-71

c

15-13 Signal sequences that direct proteins to the correct compartment are _________. (a) added to proteins through post-translational modification. (b) added to a protein by a protein translocator. (c) encoded in the amino acid sequence and sufficient for targeting a protein to its correct destination. (d) always removed once a protein is at the correct destination.

c

15-15 Which of the following statements about nuclear transport is true? (a) mRNAs and proteins transit the nucleus through different types of nuclear pores. (b) Nuclear import receptors bind to proteins in the cytosol and bring the proteins to the nuclear pores, where the proteins are released from the receptors into the pores for transit into the nucleus. (c) Nuclear pores have water-filled passages that small, water-soluble molecules can pass through in a nonselective fashion. (d) Nuclear pores are made up of many copies of a single protein.

c

15-18 Your friend works in a biotechnology company and has discovered a drug that blocks the ability of Ran to exchange GDP for GTP. What is the most likely effect of this drug on nuclear transport? (a) Nuclear transport receptors would be unable to bind cargo. (b) Nuclear transport receptors would be unable to enter the nucleus. (c) Nuclear transport receptors would be unable to release their cargo in the nucleus. (d) Nuclear transport receptors would interact irreversibly with the nuclear pore fibrils.

c

15-19 Which of the following statements is true? (a) The signal sequences on mitochondrial proteins are usually at the C- terminus. (b) Most mitochondrial proteins are not imported from the cytosol but are synthesized inside the mitochondria. (c) Chaperone proteins in the mitochondria facilitate the movement of proteins across the outer and inner mitochondrial membranes. (d) Mitochondrial proteins cross the membrane in their native, folded state.

c

15-23 Most proteins destined to enter the endoplasmic reticulum _________. (a) are transported across the membrane after their synthesis is complete. (b) are synthesized on free ribosomes in the cytosol. (c) begin to cross the membrane while still being synthesized. (d) remain within the endoplasmic reticulum.

c

15-25 In which cellular location would you expect to find ribosomes translating mRNAs that encode ribosomal proteins? (a) the nucleus (b) on the rough ER (c) in the cytosol (d) in the lumen of the ER

c

15-41 Your friend has just joined a lab that studies vesicle budding from the Golgi and has been given a cell line that does not form mature vesicles. He wants to start designing some experiments but wasn't listening carefully when he was told about the molecular defect of this cell line. He's too embarrassed to ask and comes to you for help. He does recall that this cell line forms coated pits but vesicle budding and the removal of coat proteins don't happen. Which of the following proteins might be lacking in this cell line? (a) clathrin (b) Rab (c) dynamin (d) adaptin

c

15-43 Which of the following statements about vesicular membrane fusion is false? (a) Membrane fusion does not always immediately follow vesicle docking. (b) The hydrophilic surfaces of membranes have water molecules associated with them that must be displaced before vesicle fusion can occur. c. The GTP hydrolysis of the Rab proteins provides the energy for membrane fusion. d. The interactions of the v-SNAREs and the t-SNAREs pull the vesicle membrane and the target organelle membrane together so that their lipids can intermix.

c

15-48 Cells have oligosaccharides displayed on their cell surface that are important for cell-cell recognition. Your friend discovered a transmembrane glycoprotein, GP1, on a pathogenic yeast cell that is recognized by human immune cells. He decides to purify large amounts of GP1 by expressing it in bacteria. To his purified protein he then adds a branched 14-sugar oligosaccharide to the asparagine of the only Asn-X-Ser sequence found on GP1 (Figure Q15-48). Unfortunately, immune cells do not seem to recognize this synthesized glycoprotein. Which of the following statements is a likely explanation for this problem? Figure Q15-48 (a) The oligosaccharide should have been added to the serine instead of the asparagine. (b) The oligosaccharide should have been added one sugar at a time. (c) The oligosaccharide needs to be further modified before it is mature. (d) The oligosaccharide needs a disulfide bond.

c

15-52 Which of the following statements about the unfolded protein response (UPR) is false? (a) Activation of the UPR results in the production of more ER membrane. (b) Activation of the UPR results in the production of more chaperone proteins. (c) Activation of the UPR occurs when receptors in the cytoplasm sense misfolded proteins. (d) Activation of the UPR results in the cytoplasmic activation of gene regulatory proteins.

c

15-54 Vesicles from the ER enter the Golgi at the ______. (a) medial cisternae. (b) trans Golgi network. (c) cis Golgi network. (d) trans cisternae.

c

15-6 Which of the following organelles is not part of the endomembrane system? (a) Golgi apparatus (b) the nucleus (c) mitochondria (d) lysosomes

c

12-31 For each of the following sentences, fill in the blanks with the best word or phrase selected from the list below. Not all words or phrases will be used; each word or phrase should be used only once. For an uncharged molecule, the direction of passive transport across a membrane is determined solely by its __________________ gradient. On the other hand, for a charged molecule, the __________________ must also be considered. The net driving force for a charged molecule across a membrane therefore has two components and is referred to as the __________________ gradient. Active transport allows the movement of solutes against this gradient. The transporter proteins called __________________ transporters use the movement of one solute down its gradient to provide the energy to drive the uphill transport of a second solute. When this transporter moves both ions in the same direction across the membrane, it is considered a(n) __________________; if the ions move in opposite directions, the transporter is considered a(n) __________________. antiport potential ATP hydrolysis concentration coupled electrochemical light-driven membrane symport uniport

concentration, membrane potential, electrochemical, coupled, symport, antiport

15-58 For each of the following sentences, choose one of the two options enclosed in square brackets to make a correct statement. New plasma membrane reaches the plasma membrane by the [regulated/constitutive] exocytosis pathway. New plasma membrane proteins reach the plasma membrane by the [regulated/constitutive] exocytosis pathway. Insulin is secreted from pancreatic cells by the [regulated/constitutive] exocytosis pathway. The interior of the trans Golgi network is [acidic/alkaline]. Proteins that are constitutively secreted [aggregate/do not aggregate] in the trans Golgi network.

constitutive, constitutive, regulated, acidic, do no aggregate

The __________________ makes up about half of the total cell volume of a typical eukaryotic cell. Ingested materials within the cell will pass through a series of compartments called __________________ on their way to the __________________, which contains digestive enzymes and will ultimately degrade the particles and macromolecules taken into the cell and will also degrade worn-out organelles. The __________________ has a cis and trans face and receives proteins and lipids from the __________________, a system of interconnected sacs and tubes of membranes that typically extends throughout the cell.

cytosol, endosome, lysosome, golgi apparatus, ER

11-12 Some lipases are able to cleave the covalent bonds between the glycerol backbone and the attached fatty acid. What final products do you expect to accumulate through the action of the enzyme monoacylglycerol lipase? (a) phosphoglycerol and free fatty acid (b) sterol and glycerol (c) free phosphate and glycerol (d) glycerol and free fatty acid

d

11-21 Cholesterol serves several essential functions in mammalian cells. Which of the following is not influenced by cholesterol? (a) membrane permeability (b) membrane fluidity (c) membrane rigidity (d) membrane thickness

d

11-25 Membrane curvature is influenced by the differential lipid composition of the two membrane monolayers. Which factor do you think has the largest impact on the curvature of biological membranes? (a) amount of cholesterol (b) charge of the lipid head group (c) length of the hydrocarbon tails (d) size of the lipid head group

d

11-41 Red blood cells have been very useful in the study of membranes and the protein components that provide structural support. Which of the following proteins is the principal fibrous protein in the cortex of the red blood cell? (a) tubulin (b) attachment proteins (c) actin (d) spectrin

d

11-47 The lateral movement of transmembrane proteins can be restricted by several different mechanisms. Which mechanism best describes the process by which nutrients are taken up at the apical surface of the epithelial cells that line the gut and released from their basal and lateral surfaces? (a) proteins are tethered to the cell cortex (b) proteins are tethered to the extracellular matrix (c) proteins are tethered to the proteins on the surface of another cell (d) protein movement is limited by the presence of a diffusion barrier

d

11-51 Diversity among the oligosaccharide chains found in the carbohydrate coating of the cell surface can be achieved in which of the following ways? (a) varying the types of sugar monomers used (b) varying the types of linkages between sugars (c) varying the number of branches in the chain (d) all of the above

d

11-58 We can estimate the relative mobility of a population of molecules along the surface of a living cell by fluorescently labeling the molecules of interest, bleaching the label in one small area, and then measuring the speed of signal recovery as molecules migrate back into the bleached area. What is this method called? What does the abbreviation stand for? (a) SDS (b) SPT (c) GFP (d) FRAP

d

11-6 Which of the following membrane lipids does not contain a fatty acid tail? (a) phosphatidylcholine (b) a glycolipid (c) phosphatidylserine (d) cholesterol

d

12-11 Negatively charged ions are required to balance the net positive charge from metal ions such as K+, Na+, and Ca2+. Which of the following negatively charged ions is the most abundant outside the cell and which ion does most often neutralize (written in parentheses)? (a) Cl- (Ca2+) (b) PO43- (K+) (c) PO43- (Ca2+) (d) Cl- (Na+)

d

12-13 A hungry yeast cell lands in a vat of grape juice and begins to feast on the sugars there, producing carbon dioxide and ethanol in the process: C6H12O6 + 2ADP + 2Pi + H+2CO2 + 2CH3CH2OH + 2ATP + 2H2O Unfortunately, the grape juice is contaminated with proteases that attack some of the transport proteins in the yeast cell membrane, and the yeast cell dies. Which of the following could account for the yeast cell's demise? (a) toxic buildup of carbon dioxide inside the cell (b) toxic buildup of ethanol inside the cell (c) diffusion of ATP out of the cell (d) inability to import sugar into the cell

d

12-25 The Aeroschmidt weed contains an ATP-driven ion pump in its vacuolar membrane that pumps potentially toxic heavy metal ions such as Zn2+ and Pb2+ into the vacuole. The pump protein exists in a phosphorylated and an unphosphorylated form and works in a similar way to the Na+-K+ pump of animal cells. To study its action, you incorporate the unphosphorylated form of the protein into phospholipid vesicles containing K+ in their interiors. (You ensure that all of the protein molecules are in the same orientation in the lipid bilayer.) When you add Zn2+ and ATP to the solution outside such vesicles, you find that Zn2+ is pumped into the vesicle lumen. You then expose vesicles containing the pump protein to the solutes shown in Table Q12-25A. Table Q12-25A You then determine the amount of phosphorylated and unphosphorylated ATP- driven ion pump protein in each sample. Your results are summarized in Table Q12-25B, where a minus sign indicates an absence of a type of protein and a plus sign indicates its presence. Table Q12-25B What would you expect to happen if you treat vesicles as in lane F, but before determining the phosphorylation state of the protein, you wash away the outside buffer and replace it with a buffer containing only Zn2+? (a) Nothing will happen. (No Zn2+ will move into the vesicle; no K+ will move out of the vesicle; the phosphorylation state of the protein will not change.) (b) No Zn2+ will move into the vesicle; no K+ will move out of the vesicle; the protein will become unphosphorylated. (c) A small amount of Zn2+ will move into the vesicle; no K+ will move out of the vesicle; the phosphorylation state of the protein will not change. (d) A small amount of Zn2+ will move into the vesicle; no K+ will move out of the vesicle; the protein will become unphosphorylated.

d

12-28 Cells make use of H+ electrochemical gradients in many ways. Which of the following proton transporters is used to regulate pH in animal cells? (a) light-driven pump (b) H+ A TPase (c) H+ symporter (d) Na+-H+ exchanger

d

12-29 Which of the following statements is true? (a) Amoebae have transporter proteins that actively pump water molecules from the cytoplasm to the cell exterior. (b) Bacteria and animal cells rely on the Na+-K+ pump in the plasma membrane to prevent lysis resulting from osmotic imbalances. (c) The Na+-K+ pump allows animal cells to thrive under conditions of very low ionic strength. (d) The Na+-K+ pump helps to keep both Na+ and Cl- ions out of the cell.

d

12-39 The stimulation of auditory nerves depends on the opening and closing of channels in the auditory hair cells. Which type of gating mechanism do these cells use? (a) voltage-gated (b) extracellular ligand-gated (c) intracellular ligand-gated (d) stress-gated

d

12-43 K+ leak channels are found in the plasma membrane. These channels open and close in an unregulated, random fashion. What do they accomplish in a resting cell? They set the K+ concentration gradient to zero. (b) They set the membrane potential to zero. (c) They disrupt the resting membrane potential. (d) They keep the electrochemical gradient for K+ at zero.

d

12-48 In a method called patch-clamping, a glass capillary can be converted into a microelectrode that measures the electrical currents across biological membranes. Which of the following is not true about the patch-clamp method? (a) The glass capillary adheres to a "patch" of membrane through the application of suction. (b) The aperture in the glass capillary used to make a microelectrode is about 1 μm in diameter. (c) If the experimental conditions are held constant, fluctuations in electrical currents across the patch of membrane are still observed. (d) Single-channel patch-clamp recordings have demonstrated that gated membrane channels will only open and close in response to specific stimuli.

d

12-51 Which of the following statements does not accurately describe the events involved in the propagation of an action potential? (a) An initial influx of Na+ through a small cluster of channels causes local depolarization of the membrane. (b) Local depolarization causes nearby Na+ channels to open. (c) Channels in depolarized regions of the membrane are inactivated until the resting membrane potential is reestablished. (d) The opening of transmitter-gated K+ channels helps to repolarize the membrane.

d

12-52 Which of the following is required for the secretion of neurotransmitters in response to an action potential? (a) neurotransmitter receptors (b) Na+-K+ pumps c. voltage-gated K+ channels (d) voltage-gated Ca2+ channels

d

12-55 Figure Q12-55 illustrates changes in membrane potential during the formation of an action potential. What membrane characteristic or measurement used to study action potentials is indicated by the arrow? Figure Q12-55 (a) effect of a depolarizing stimulus (b) resting membrane potential (c) threshold potential (d) action potential

d

12-6 Below is a list of molecules with different chemical characteristics. Knowing that all molecules will eventually diffuse across a phospholipid bilayer, select the option below that most accurately predicts the relative rates of diffusion of these molecules (fastest to slowest). alanine estrogen propanol sodium (a) alanine > propanol > sodium > estrogen (b) sodium > propanol > alanine > estrogen (c) estrogen > propanol > sodium > alanine (d) estrogen > propanol > alanine > sodium

d

12-60 Both excitatory and inhibitory neurons form junctions with muscles. By what mechanism do inhibitory neurotransmitters prevent the postsynaptic cell from firing an action potential? (a) by closing Na+ channels (b) by preventing the secretion of excitatory neurotransmitters (c) by opening K+ channels (d) by opening Cl- channels

d

12-64 Which of the following statements about GABA receptors is not true? (a) They are located on postsynaptic membranes. (b) They are ligand-gated channels. (c) They inhibit synaptic signaling. (d) They promote neuronal uptake of Na+.

d

13-14 Several different classes of enzymes are needed for the catabolism of carbohydrates. Which of the following descriptions best matches the function of a kinase? (a) An enzyme that catalyzes the rearrangement of bonds within a single molecule. (b) An enzyme that catalyzes a change in the position of a specific chemical group within a single molecule. (c) An enzyme that catalyzes the oxidation of a molecule by removing a hydride ion. (d) An enzyme that catalyzes the addition of phosphate groups to other molecules.

d

13-18 On a diet consisting of nothing but protein, which of the following is the most likely outcome? (a) loss of weight because amino acids cannot be used for the synthesis of fat (b) muscle gain because the amino acids will go directly into building muscle (c) tiredness because amino acids cannot be used to generate energy (d) excretion of more nitrogenous (ammonia-derived) wastes than with a more balanced diet

d

13-21 Which of the following processes do not take place in the mitochondria? (a) citric acid cycle (b) conversion of pyruvate to activated acetyl groups (c) oxidation of fatty acids to acetyl CoA (d) glycogen breakdown

d

13-3 Which of the following stages in the breakdown of the piece of toast you had for breakfast generates the most ATP? (a) the digestion of starch to glucose (b) glycolysis (c) the citric acid cycle (d) oxidative phosphorylation

d

13-34 Pyruvate must move from the cytosol into the mitochondria, where it is oxidized to form CO2 and acetyl CoA by the pyruvate dehydrogenase complex. How many different enzymes and what total number of polypeptides, respectively, are required to perform this oxidation process in the mitochondrion? (a) 1; 60 (b) 3;3 (c) 3; 26 (d) 3; 60

d

13-43 The citric acid cycle is a series of oxidation reactions that removes carbon atoms from substrates in the form of CO2. Once a molecule of acetyl CoA enters the citric acid cycle, how many complete cycles are required for both of the carbon atoms in its acetyl groupto be oxidized to CO2? (a) 1 (b) 2 (c) 3 (d) 4

d

13-46 In step 2 of the citric acid cycle, the enzyme aconitase generates isocitrate from citrate. Which of the following statements about this reaction is true? (a) There is a substantial free-energy difference between the reactants and products of this reaction. (b) The unbonded electrons from hydroxide ions provide energy for this reaction. (c) The aconitase enzyme functions as a mutase in this reaction. (d) The reaction sequence first generates one molecule of water and then consumes one molecule of water.

d

13-47 In step 3 of the citric acid cycle, the oxidation of isocitrate and the production of CO2 are coupled to the reduction of NAD+, generating NADH and an α- ketoglutarate molecule. In the isocitrate molecule shown in Figure Q13-47, which carbon is lost as CO2 and which is converted to a carbonyl carbon? (a) 4 and 6 (b) 6 and 5 (c) 5 and 4 (d) 6 and 4 Figure Q13-47

d

13-55 The oxygen-dependent reactions required for cellular respiration were originally thought to occur in a linear pathway. By using a competitive inhibitor for one enzyme in the pathway, investigators discovered that these reactions occur in a cycle. Which enzyme was inhibited? (a) aconitase (b) isocitrate dehydrogenase (c) malate dehydrogenase (d) succinate dehydrogenase

d

13-64 Step 3 in glycolysis requires the activity of phosphofructokinase to convert fructose 6-phosphate into fructose 1,6-bisphosphate. Which of the following molecules is an allosteric inhibitor of this enzyme? (a) Pi (b) AMP (c) ADP (d) ATP

d

13-65 The conversion of fructose 1,6-bisphosphate to fructose 6-phosphate is catalyzed by a fructose 1,6-bisphosphatase and is one of the final steps in gluconeogenesis. Which of the following molecules is an allosteric activator of this enzyme? (a) Pi (b) AMP (c) ADP (d) ATP

d

13-68 Pyruvate can be converted into many other molecules by various biosynthetic and metabolic pathways, which makes it a central hub in the regulation of cellular metabolism. Which of the following molecules is not made from pyruvate? (a) oxaloacetate (b) ethanol (c) lactate (d) NADH

d

14-14 Which of the following statements describes the mitochondrial matrix? (a) It is permeable to molecules with molecular mass as high as 5000 daltons. (b) It contains transporters for ATP molecules. (c) It contains proteins that are released during apoptosis. (d) It contains enzymes required for the oxidation of fatty acids.

d

14-17 Electron transport is coupled to ATP synthesis in mitochondria, in chloroplasts, and in the thermophilic bacterium Methanococcus. Which of the following is likely to affect the coupling of electron transport to ATP synthesis in all of these systems? (a) a potent inhibitor of cytochrome c oxidase (b) the removal of oxygen (c) the absence of light (d) an ADP analog that inhibits ATP synthase

d

14-21 Which component of the electron-transport chain is required to combine the pair of electrons with molecular oxygen? (a) cytochrome c (b) cytochrome b-c1 complex (c) ubiquinone (d) cytochrome c oxidase

d

14-36 Experimental evidence supporting the chemiosmotic hypothesis was gathered by using artificial vesicles containing a protein that can pump protons in one direction across the vesicle membrane to create a proton gradient. Which protein was used to generate the gradient in a highly controlled manner? (a) cytochrome c oxidase (b) NADH dehydrogenase (c) cytochrome c (d) bacteriorhodopsin

d

14-4 Which of the following is not part of the process known as oxidative phosphorylation? (a) Molecular oxygen serves as a final electron acceptor. (b) FADH2 and NADH become oxidized as they transfer a pair of electrons to the electron-transport chain. (c) The electron carriers in the electron-transport chain toggle between reduced and oxidized states as electrons are passed along. (d) ATP molecules are produced in the cytosol as glucose is converted into pyruvate.

d

14-51 Which of the following statements is true? (a) Ubiquinone is a small, hydrophobic protein containing a metal group that acts as an electron carrier. (b) A 2Fe2S iron-sulfur center carries one electron, whereas a 4Fe4S center carries two. (c) Iron-sulfur centers generally have a higher redox potential than do cytochromes. (d) Mitochondrial electron carriers with the highest redox potential generally contain copper ions and/or heme groups.

d

14-54 Photosynthesis is a process that takes place in chloroplasts and uses light energy to generate high-energy electrons, which are passed along an electron-transport chain. Where are the proteins of the electron-transport chain located in chloroplasts? (a) thylakoid space (b) stroma (c) inner membrane (d) thylakoid membrane

d

14-57 The ATP synthase found in chloroplasts is structurally similar to the ATP synthase in mitochondria. Given that ATP is being synthesized in the stroma, where will the F0 portion of the ATP synthase be located? (a) thylakoid space (b) stroma (c) inner membrane (d) thylakoid membrane

d

14-58 Stage 2 of photosynthesis, sometimes referred to as the dark reactions, involves the reduction of CO2 to produce organic compounds such as sucrose. What cofactor is the electron donor for carbon fixation? (a) H2O (b) NADH (c) FADH2 (d) NADPH

d

14-65 Which of the following statements is not true about the possible fates of glyceraldehyde 3-phosphate? (a) It can be exported from the chloroplast to the cytosol for conversion into sucrose. (b) It can be used to make starch, which is stored inside the stroma of the chloroplast. (c) It can be used as a precursor for fatty acid synthesis and stored as fat droplets in the stroma. (d) It can be transported into the thylakoid space for use as a secondary electron acceptor downstream of the electron-transport chain.

d

14-70 Below is a list of breakthroughs in energy metabolism in living systems. Which is the correct order in which they are thought to have evolved? H2O-splitting enzyme activity light-dependent transfer of electrons from H2S to NADPH the consumption of fermentable organic acids oxygen-dependent A TP synthesis (a) A, C, D, B (b) C, A, B, D (c) B, C, A, D (d) C, B, A, D

d

15-10 Where are proteins in the chloroplast synthesized? (a) in the cytosol (b) in the chloroplast (c) on the endoplasmic reticulum (d) in both the cytosol and the chloroplast

d

15-11 Proteins that are fully translated in the cytosol do not end up in _______. (a) the cytosol. (b) the mitochondria. (c) the interior of the nucleus. (d) transport vesicles.

d

15-24 After isolating the rough endoplasmic reticulum from the rest of the cytoplasm, you purify the RNAs attached to it. Which of the following proteins do you expect the RNA from the rough endoplasmic reticulum to encode? (a) soluble secreted proteins (b) ER membrane proteins (c) plasma membrane proteins (d) all of the above

d

15-27 You are interested in Fuzzy, a soluble protein that functions within the ER lumen. Given that information, which of the following statements must be true? (a) Fuzzy has a C-terminal signal sequence that binds to SRP. (b) Only one ribosome can be bound to the mRNA encoding Fuzzy during translation. (c) Fuzzy must contain a hydrophobic stop-transfer sequence. (d) Once the signal sequence from Fuzzy has been cleaved, the signal peptide will be ejected into the ER membrane and degraded.

d

15-28 Which of the following statements about a protein in the lumen of the ER is false? (a) A protein in the lumen of the ER is synthesized by ribosomes on the ER membrane. (b) Some of the proteins in the lumen of the ER can end up in the extracellular space. (c) Some of the proteins in the lumen of the ER can end up in the lumen of an organelle in the endomembrane system. (d) Some of the proteins in the lumen of the ER can end up in the plasma membrane.

d

15-36 Which of the following choices reflects the appropriate order of locations through which a protein destined for the plasma membrane travels? (a) lysosome -> endosome -> plasma membrane (b) ER -> lysosome -> plasma membrane (c) Golgi -> lysosome -> plasma membrane (d) ER -> Golgi -> plasma membrane

d

15-40 Which of the following protein families are not involved in directing transport vesicles to the target membrane? (a) SNAREs (b) Rabs (c) tethering proteins (d) adaptins

d

15-45 N-linked oligosaccharides on secreted glycoproteins are attached to ________. (a) nitrogen atoms in the polypeptide backbone. (b) the serine or threonine in the sequence Asn-X-Ser/Thr. (c) the N-terminus of the protein. (d) the asparagine in the sequence Asn-X-Ser/Thr.

d

15-47 Which of the following statements about disulfide bond formation is false? (a) Disulfide bonds do not form under reducing environments. (b) Disulfide bonding occurs by the oxidation of pairs of cysteine side chains on the protein. (c) Disulfide bonding stabilizes the structure of proteins. (d) Disulfide bonds form spontaneously within the ER because the lumen of the ER is oxidizing.

d

15-49 Different glycoproteins can have a diverse array of oligosaccharides. Which of the statements below about this diversity is true? (a) Extensive modification of oligosaccharides occurs in the extracellular space. (b) Different oligosaccharides are covalently linked to proteins in the ER and the Golgi. (c) A diversity of oligosaccharyl transferases recognizes specific protein sequences, resulting in the linkage of a variety of oligosaccharides to proteins. (d) Oligosaccharide diversity comes from modifications that occur in the ER and the Golgi of the 14-sugar oligosaccharide added to the protein in the ER.

d

The action potential is a wave of __________________ that spreads rapidly along the neuronal plasma membrane. This wave is triggered by a local change in the membrane potential to a value that is __________________ negative than the resting membrane potential. The action potential is propagated by the opening of __________________-gated channels. During an action potential, the membrane potential changes from __________________ to __________________. The action potential travels along the neuron's __________________ to the nerve terminals. Neurons chiefly receive signals at their highly branched __________________.

depolarization, less, voltage, negative, positive, axon, dendrites

NADH donates electrons to the __________________ of the three respiratory enzyme complexes in the mitochondrial electron-transport chain. __________________ is a small protein that acts as a mobile electron carrier in the respiratory chain. __________________ transfers electrons to oxygen. Electron transfer in the chain occurs in a series of __________________ reactions. The first mobile electron carrier in the respiratory chain is __________________. cytochrome c cytochrome c oxidase first NADH dehydrogenase oxidation oxidation-reduction phosphorylation plastoquinone reduction second the cytochrome b-c1 complex third ubiquinone

first, cytochrome c, cytochrome c oxidase, oxidation-reduction, ubiquinone

14-50 For each of the following sentences, choose one of the options enclosed in square brackets to make a correct statement. An electron bound to a molecule with low affinity for electrons is a [high/low]- energy electron. Transfer of an electron from a molecule with low affinity to one with higher affinity has a [positive/negative] ΔG° and is thus [favorable/unfavorable] under standard conditions. If the reduced form of a redox pair is a strong electron donor with a [high/low] affinity for electrons, it is easily oxidized; the oxidized member of such a redox pair is a [weak/strong] electron acceptor.

high, negative, favorable, low, weak

Oxidative phosphorylation is a process that occurs in the __________________ of mitochondria. It requires an electron-transport chain that operates on the high- energy electrons taken from the activated carrier molecules __________________ and __________________ that are produced by glycolysis and the citric acid cycle. These electrons are transferred through a series of molecules, and the energy released during these transfers is used to generate a gradient of __________________, or __________________. Because their concentration is much __________________ outside than inside the mitochondria, the flow of __________________, or __________________, down the concentration gradient is energetically very __________________ and can thus be coupled to the production of ATP from ADP. Thus, oxidative phosphorylation refers to the oxidation of __________________ and __________________ molecules and the phosphorylation of __________________. Without this process, the yield of ATP from each glucose molecule would be __________________ decreased.

inner membrane, NADH, FADH2, protons, H+, higher, protons, H+, favorable, NADH, FADH2, ADP, severely

12-7 For each of the following sentences, fill in the blanks with the best word or phrase selected from the list below. Not all words or phrases will be used; each word or phrase should be used only once. A molecule moves down its concentration gradient by __________________ transport, but requires __________________ transport to move up its concentration gradient. Transporter proteins and ion channels function in membrane transport by providing a __________________ pathway through the membrane for specific polar solutes or inorganic ions. __________________ are highly selective in the solutes they transport, binding the solute at a specific site and changing conformation so as to transport the solute across the membrane. On the other hand, __________________ discriminate between solutes mainly on the basis of size and electrical charge. active amino acid amphipathic proteins hydrophilic hydrophobic ion channels noncovalent passive transporter

passive, active, hydrophilic, transporter proteins, ion channels

Eukaryotic cells are continually taking up materials from the extracellular space by the process of endocytosis. One type of endocytosis is __________________, which uses __________________ proteins to form small vesicles containing fluids and molecules. After these vesicles have pinched off from the plasma membrane, they will fuse with the __________________, where materials that are taken into the vesicle are sorted. A second type of endocytosis is __________________, which is used to take up large vesicles that can contain microorganisms and cellular debris. Macrophages are especially suited for this process, as they extend __________________ (sheetlike projections of their plasma membrane) to surround the invading microorganisms. chaperone cholesterol clathrin endosome Golgi apparatus mycobacterium phagocytosis pinocytosis pseudopods rough ER SNARE transcytosis

pinocytosis, clathrin, endosome, phagocytosis, pseudopods

The specialized functions of different membranes are largely determined by the __________________ they contain. Membrane lipids are __________________ molecules, composed of a hydrophilic portion and a hydrophobic portion. All cell membranes have the same __________________ structure, with the __________________ of the phospholipids facing into the interior of the membrane and the __________________ on the outside. The most common lipids in most cell membranes are the __________________. The head group of a glycolipid is composed of __________________.

proteins, amphipathic, lipid bilayer, fatty acid tails, hydrophilic head groups, phospholipids, sugars

Mitochondria can use both __________________ and __________________ directly as fuel. __________________ produced in the citric acid cycle donates electrons to the electron-transport chain. The citric acid cycle oxidizes __________________ and produces __________________ as a waste product. __________________ acts as the final electron acceptor in the electron-transport chain. The synthesis of ATP in mitochondria is also known as __________________. acetyl groups carbon dioxide chemiosmosis fatty acids glucose NADH NADP+ NADPH oxidative phosphorylation oxygen NAD+ pyruvate

pyruvate, fatty acids, NADH, acetyl groups, carbon dioxide, Oxygen, oxidative phosphorylation

14-61 Use the terms provided below to fill in the blanks. Not all words or phrases will be used; each word or phrase may be used more than once. Photons from sunlight that are in the ______________ wavelength range are preferentially absorbed by chlorophyll molecules to raise the energy levels of electrons in the __________ ring. The __________ reflected are lower in energy, which is indicated in the ________, green wavelengths detected by the human eye.

red, porphyrin, photons, longer

14-68 For each of the following sentences, fill in the blanks with the best word or phrase selected from the list below. Not all words or phrases will be used; each word or phrase should be used only once. In the carbon-fixation process in chloroplasts, carbon dioxide is initially added to the sugar __________________. The final product of carbon fixation in chloroplasts is the three-carbon compound __________________. This is converted into __________________ (which can be used directly by the mitochondria), into __________________ (which is exported to other cells), and into __________________ (which is stored in the stroma). The carbon-fixation cycle requires energy in the form of __________________ and reducing power in the form of __________________. 3-phosphoglycerate ATP glyceraldehyde 3-phosphate NADH NADPH pyruvate ribose 1,5-bisphosphate ribulose 1,5-bisphosphate starch sucrose

ribulose 1,5-biphosphate, glyceraldehyde 3-phosphate, pyruvate, sucrose, starch, ATP, NADPH

Proteins are transported out of a cell via the __________________ or __________________ pathway. Fluids and macromolecules are transported into the cell via the __________________ pathway. All proteins being transported out of the cell pass through the __________________ and the __________________. Transport vesicles link organelles of the __________________ system. The formation of __________________ in the endoplasmic reticulum stabilizes protein structure.

secretory, exocytic, endocytic, ER, GA, endomembrane, disulfide bonds

11-31 A small membrane vesicle containing a transmembrane protein is shown in Figure Q11-31. Assume that this membrane vesicle is in the cytoplasm of a cell. Figure Q11-31 Label the cytosolic and noncytosolic faces of the membrane vesicle. This membrane vesicle will undergo fusion with the plasma membrane. Sketch the plasma membrane after vesicle fusion, indicating the new locations of the vesicle membrane and the transmembrane protein carried by the membrane vesicle. On your drawing for B, label the original cytosolic and noncytosolic faces of the vesicle membrane as it resides in the plasma membrane. Also label the extracellular space and the cytosol. Indicate the N- and C-terminus of the inserted transmembrane protein.

see figure a11- 31b

12-23 Fill in Table Q12-23. In the "Type of transport" column, designate whether the transporter works by uniport, symport, or antiport mechanisms. Table Q12-23

see test

12-49 Match the numbered lines in the diagram with the following structures:

see test

13-19 Figure Q13-19 represents a cell lining the gut. Draw numbered, labeled lines to indicate exactly where inside a cell the following processes take place. Figure Q13-19 glycolysis citric acid cycle conversion of pyruvate to activated acetyl groups oxidation of fatty acids to acetyl CoA glycogen breakdown release of fatty acids from triacylglycerols oxidative phosphorylation

see test

13-44 The citric acid cycle is outlined in Figure Q13-44. Some of these reactions produce small molecules that are used in the electron-transport chain or as energy for other reactions. Select from the list below to fill in the empty boxes. Keep in mind that some choices may be used more than once and others not used at all. ATP ADP GTP Figure Q13-44 GDP E. NAD+ F. NADH G. FADH H. FADH2

see test

15-35 Figure Q15-35 shows the orientation of a multipass transmembrane protein after it has completed its entry into the ER membrane (part A) and after it gets delivered to the plasma membrane (part B). This protein has an N-terminal signal sequence (depicted as the dark gray membrane-spanning box), which signal peptidase cleaves off in the endoplasmic reticulum. The other membrane-spanning domains in the protein are represented as open boxes. Given that any hydrophobic membrane-spanning domain can act as either a start-transfer region or a stop- transfer region, draw the final consequences of the actions described below on the orientation of the protein in the plasma membrane. Indicate on your drawing the extracellular space, the cytosolic face, and the plasma membrane, as well as the N- and C-terminus of the protein. Figure Q15-35 deleting the first signal sequence changing the hydrophobic amino acids in the first, cleaved sequence to charged amino acids changing the hydrophobic residues in every other transmembrane sequence to charged residues, starting with the first, cleaved signal sequence

see test

15-53 Match the set of labels below with the numbered label lines on Figure Q15-53. Figure Q15-53

see test

15-55 A plasma membrane protein carries an oligosaccharide containing mannose (Man), galactose (Gal), sialic acid (SA), and N-acetylglucosamine (GlcNAc). These sugars are added to the protein as it proceeds through the secretory pathway. First, a core oligosaccharide containing Man and GlcNAc is added, followed by Gal, Man, SA, and GlcNAc in a particular order. Each addition is catalyzed by a different transferase acting at a different stage as the protein proceeds through the secretory pathway. You have isolated mutants defective for each of the transferases, purified the membrane protein from each of the mutants, and identified which sugars are present in each mutant protein. Table Q15-55 summarizes the results. Table Q15-55 From these results, match each of the transferases (A, B, C, D) to its subcellular location selected from the list below. (Assume that each location contains only one enzyme.) central Golgi cisternae cis Golgi network ER trans Golgi network

see test

15-4 Label the structures of the cell indicated by the lines in Figure Q15-4.

see test!

A carbon atom in a CO2 molecule in the atmosphere eventually becomes a part of one of the enzymes that catalyzes glycolysis in one of your cells. The CO2 first enters a cell in a corn leaf, where photosynthesis fixes the carbon to make it part of a sugar molecule; this travels from the leaf to an ear of corn, where it is stored as part of a polysaccharide __________________ molecule in the corn seed. You then eat a corn chip made from the corn seed. You digest the corn seed, and the free __________________ travels in your bloodstream, eventually being taken up by a liver cell and stored as __________________. When required, this storage molecule breaks down into glucose 1-phosphate, which enters the glycolytic pathway. Glycolysis produces __________________, which is converted into acetyl CoA, which enters the __________________. Several intermediates in this process can provide the carbon skeleton for the production of __________________, which are then incorporated into the enzymes that catalyze steps in glycolysis.

starch, glucose, glycogen, pyruvate, citric acid cycle, amino acids

Neurons communicate with each other through specialized sites called __________________. Many neurotransmitter receptors are ligand-gated ion channels that open transiently in the __________________ cell membrane in response to neurotransmitters released by the __________________ cell. Ligand- gated ion channels in nerve cell membranes convert __________________ signals into __________________ ones. Neurotransmitter release is stimulated by the opening of voltage-gated __________________ in the nerve-terminal membrane.

synapses, postsynaptic, presynaptic, chemical, electrical, Ca2+ channels

11-37 For each of the following sentences, fill in the blanks with the best word or phrase selected from the list below. Not all words or phrases will be used; each word or phrase should be used only once. There are several ways that membrane proteins can associate with the cell membrane. Membrane proteins that extend through the lipid bilayer are called __________________ proteins and have __________________ regions that are exposed to the interior of the bilayer. On the other hand, membrane-associated proteins do not span the bilayer and instead associate with the membrane through an α helix that is __________________. Other proteins are __________________ attached to lipid molecules that are inserted in the membrane. __________________ membrane proteins are linked to the membrane through noncovalent interactions with other membrane-bound proteins.

transmembrane, hydrophobic, amphipathic, covalently, peripheral


Conjuntos de estudio relacionados

Quizlet - La escritura del sonido /k/

View Set

Research Methods Psych 344 Morling

View Set

Intermediate Macro Chapter 7 Quiz

View Set

Chapter 8 Color Science, Vision, and Space

View Set

Wordly Wise 7th Grade - Lesson 2 Definitions

View Set