Review for chapter 2 and 4
Given sin α = -3/5, cos α = -4/5 and cos β = (2√5)/5, sin β = (-√5)/5 Please find cos(a + b)
(-11√5)/25
(1 - csc^2(x))tan^2(x)
-1
(tan 8π/9-tan π/18)/(1+tan 8π/9 tan π/18)
-√3/3
Simplify: (sin^2(θ))(1 + cot^2(θ))
1
Find the exact value of the expression. cos(20)cos(40) - sin(20)sin(40)
1/2
Find the exact value of the expression. sin(5π/12)cos(π/4) - cos(5π/12)sin(π/4)
1/2
sinθcos3θ+cosθsin3θ
4θ
Solve on the interval [0,360) 2cosx-1=0
60, 300
Write the following expression as the sine, cosine, or tangent of an angle. cos(175)cos(55)+sin(175)sin(55)
cos(120)
.(sec^2(x)- 1)/sin^2(x)
sec^2(x)
(tan u+tan 4u)/(1-tan u tan 4u)
tan 5u
Simplify: (sec(θ) + 1)(sec(θ) - 1)
tan^2(θ)
Solve sinθ = -1 on θ∈[0, 2π)
θ = 3π /2
Solve cosθ = - √(3)/2 on θ∈[0, 2π)
θ = 5π /6, 7π /6
cos(10)cos(35)-sin(10)sin(35)
√2/2
sinπ/9*cos2π/9+cosπ/9*sin2π/9
√3/2