Unit 2 Complex Numbers Study Guide
number pairs of the form a + bi and a - bi & example
complex conjugate 3i^2, -3i^2
the set of real and imaginary numbers & example
complex number 3 + 4i, 2, 6i
Simplify the expression: -10-i ------- -2i
i/-2i - 5i
any number of the form a + bi where a and b are real numbers and b ≠ 0 & example
imaginary number 3+2i, 6-2i
an imaginary number of the form a + bi where a = 0 & example
pure imaginary number 2i, 1/2i, -3i
the symbol √ is called...
radical, square root sign
the number inside the radical sign & example
radicand √2
Solve for x & y: 2x+8+5yi=6x-4
x=3 y=0
Solve for x & y: 5+x-8i=10+2yi
x=5 y=-4
Give a quadratic equation with the given root: x=6i
y=x^2+36
Give a quadratic equation with the given root: x=4-2i
y=x^2-8x+20
find the absolute value of each complex number: |-2+5i| =
√-2^2+5^2 √4+25 √29
find the absolute value of each complex number: |-6i| =
√-6^2 √36 √6
find the absolute value of each complex number: |4-4i| =
√4^2 + 4^2 √16+16 √32 √4√2
find the absolute value of each complex number: |5+3i| =
√5^2 + 3^2 √25+9 √34
Simplify the expression: (3+4i) + (-2-5i)
-1-1i
Simplify the rational expression: (-7+5i√3)(2+i√3)
-29+3i√3
Simplify the expression: (-1+6i) - (8-3i)
-9+9i
Simplify the expression: (2+2i)(8-i)
16-2i+16i-2i^2 16-14i+2 18-14i
Simplify the expression: 2-2i ----- 5+3i
2/17 - 8/17 i
Simplify the rational expression: 4+√3 -------- 2+√3
5-2√3
Simplify the expression: (3+i)(3-i)
9-3i+3i-i^2 9+1 10