Unit 2 Molecular Biology

¡Supera tus tareas y exámenes ahora con Quizwiz!

Cytosine makes up 42% of the nucleotides in a sample of DNA from an organism. Approximately what percentage of the nucleotides in this sample will be thymine? A) 8% B) 16% C) 31% D) 42% E) It cannot be determined from the information provided.

A) 8%

The genetic code is essentially the same for all organisms. From this, one can logically assume which of the following? A) A gene from an organism can theoretically be expressed by any other organism. B) All organisms have experienced convergent evolution. C) DNA was the first genetic material. D) The same codons in different organisms translate into the different amino acids. E) Different organisms have different numbers of different types of amino acids.

A) A gene from an organism can theoretically be expressed by any other organism.

Why do histones bind tightly to DNA? A) Histones are positively charged, and DNA is negatively charged. B) Histones are negatively charged, and DNA is positively charged. C) Both histones and DNA are strongly hydrophobic. D) Histones are covalently linked to the DNA. E) Histones are highly hydrophobic, and DNA is hydrophilic.

A) Histones are positively charged, and DNA is negatively charged.

The "universal" genetic code is now known to have exceptions. Evidence for this can be found if which of the following is true? A) If UGA, usually a stop codon, is found to code for an amino acid such as tryptophan (usually coded for by UGG only). B) If one stop codon, such as UGA, is found to have a different effect on translation than another stop codon, such as UAA. C) If prokaryotic organisms are able to translate a eukaryotic mRNA and produce the same polypeptide. D) If several codons are found to translate to the same amino acid, such as serine. E) If a single mRNA molecule is found to translate to more than one polypeptide when there are two or more AUG sites.

A) If UGA, usually a stop codon, is found to code for an amino acid such as tryptophan (usually coded for by UGG only).

Which of the following DNA mutations is the most likely to be damaging to the protein it specifies? A) a base-pair deletion B) a codon substitution C) a substitution in the last base of a codon D) a codon deletion E) a point mutation

A) a base-pair deletion

You briefly expose bacteria undergoing DNA replication to radioactively labeled nucleotides. When you centrifuge the DNA isolated from the bacteria, the DNA separates into two classes. One class of labeled DNA includes very large molecules (thousands or even millions of nucleotides long), and the other includes short stretches of DNA (several hundred to a few thousand nucleotides in length). These two classes of DNA probably represent A) leading strands and Okazaki fragments. B) lagging strands and Okazaki fragments. C) Okazaki fragments and RNA primers. D) leading strands and RNA primers. E) RNA primers and mitochondrial DNA.

A) leading strands and Okazaki fragments.

The leading and the lagging strands differ in that A) the leading strand is synthesized in the same direction as the movement of the replication fork, and the lagging strand is synthesized in the opposite direction. B) the leading strand is synthesized by adding nucleotides to the 3' end of the growing strand, and the lagging strand is synthesized by adding nucleotides to the 5' end. C) the lagging strand is synthesized continuously, whereas the leading strand is synthesized in short fragments that are ultimately stitched together. D) the leading strand is synthesized at twice the rate of the lagging strand.

A) the leading strand is synthesized in the same direction as the movement of the replication fork, and the lagging strand is synthesized in the opposite direction.

Which of the following variations on translation would be most disadvantageous for a cell? A) translating polypeptides directly from DNA B) using fewer kinds of tRNA C) having only one stop codon D) lengthening the half-life of mRNA E) having a second codon (besides AUG) as a start codon

A) translating polypeptides directly from DNA

In E. coli, there is a mutation in a gene called dnaB that alters the helicase that normally acts at the origin. Which of the following would you expect as a result of this mutation? A) No proofreading will occur. B) No replication fork will be formed. C) The DNA will supercoil. D) Replication will occur via RNA polymerase alone. E) Replication will require a DNA template from another source.

B) No replication fork will be formed.

Replication in prokaryotes differs from replication in eukaryotes for which of the following reasons? A) Prokaryotic chromosomes have histones, whereas eukaryotic chromosomes do not. B) Prokaryotic chromosomes have a single origin of replication, whereas eukaryotic chromosomes have many. C) The rate of elongation during DNA replication is slower in prokaryotes than in eukaryotes. D) Prokaryotes produce Okazaki fragments during DNA replication, but eukaryotes do not. E) Prokaryotes have telomeres, and eukaryotes do not.

B) Prokaryotic chromosomes have a single origin of replication, whereas eukaryotic chromosomes have many.

What is meant by the description "antiparallel" regarding the strands that make up DNA? A) The twisting nature of DNA creates nonparallel strands. B) The 5' to 3' direction of one strand runs counter to the 5' to 3' direction of the other strand. C) Base pairings create unequal spacing between the two DNA strands. D) One strand is positively charged and the other is negatively charged. E) One strand contains only purines and the other contains only pyrimidines.

B) The 5' to 3' direction of one strand runs counter to the 5' to 3' direction of the other strand.

If a cell were unable to produce histone proteins, which of the following would be a likely effect? A) There would be an increase in the amount of "satellite" DNA produced during centrifugation. B) The cell's DNA couldn't be packed into its nucleus. C) Spindle fibers would not form during prophase. D) Amplification of other genes would compensate for the lack of histones. E) Pseudogenes would be transcribed to compensate for the decreased protein in the cell.

B) The cell's DNA couldn't be packed into its nucleus.

Which of the following statements is true about protein synthesis in prokaryotes? A) Extensive RNA processing is required before prokaryotic transcripts can be translated. B) Translation can begin while transcription is still in progress. C) Prokaryotic cells have complicated mechanisms for targeting proteins to the appropriate cellular organelles. D) Translation requires antibiotic activity. E) Unlike eukaryotes, prokaryotes require no initiation or elongation factors.

B) Translation can begin while transcription is still in progress.

Which small-scale mutation would be most likely to have a catastrophic effect on the functioning of a protein? A) a base substitution B) a base deletion near the start of a gene C) a base deletion near the end of the coding sequence, but not in the terminator codon D) deletion of three bases near the start of the coding sequence, but not in the initiator codon E) a base insertion near the end of the coding sequence, but not in the terminator codon

B) a base deletion near the start of a gene

In eukaryotic cells, transcription cannot begin until A) the two DNA strands have completely separated and exposed the promoter. B) several transcription factors have bound to the promoter. C) the 5' caps are removed from the mRNA. D) the DNA introns are removed from the template. E) DNA nucleases have isolated the transcription unit.

B) several transcription factors have bound to the promoter.

Which of the following does not occur in prokaryotic eukaryotic gene expression, but does in eukaryotic gene expression? A) mRNA, tRNA, and rRNA are transcribed. B) RNA polymerase binds to the promoter. C) A poly-A tail is added to the 3' end of an mRNA and a cap is added to the 5' end. D) Transcription can begin as soon as translation has begun even a little. E) RNA polymerase requires a primer to elongate the molecule.

C) A poly-A tail is added to the 3' end of an mRNA and a cap is added to the 5' end.

A part of the promoter, called the TATA box, is said to be highly conserved in evolution. Which of the following might this illustrate? A) The sequence evolves very rapidly. B) The sequence does not mutate. C) Any mutation in the sequence is selected against. D) The sequence is found in many but not all promoters. E) The sequence is transcribed at the start of every gene.

C) Any mutation in the sequence is selected against.

What is the basis for the difference in how the leading and lagging strands of DNA molecules are synthesized? A) The origins of replication occur only at the 5' end. B) Helicases and single-strand binding proteins work at the 5' end. C) DNA polymerase can join new nucleotides only to the 3' end of a growing strand. D) DNA ligase works only in the 3' → 5' direction. E) Polymerase can work on only one strand at a time.

C) DNA polymerase can join new nucleotides only to the 3' end of a growing strand.

What is the effect of a nonsense mutation in a gene? A) It changes an amino acid in the encoded protein. B) It has no effect on the amino acid sequence of the encoded protein. C) It introduces a premature stop codon into the mRNA. D) It alters the reading frame of the mRNA. E) It prevents introns from being excised.

C) It introduces a premature stop codon into the mRNA.

What type of bonding is responsible for maintaining the shape of the tRNA molecule? A) covalent bonding between sulfur atoms B) ionic bonding between phosphates C) hydrogen bonding between base pairs D) van der Waals interactions between hydrogen atoms E) peptide bonding between amino acids

C) hydrogen bonding between base pairs

Which of the following provides some evidence that RNA probably evolved before DNA? A) RNA polymerase uses DNA as a template. B) RNA polymerase makes a single-stranded molecule. C) RNA polymerase does not require localized unwinding of the DNA. D) DNA polymerase uses primer, usually made of RNA. E) DNA polymerase has proofreading function.

D) DNA polymerase uses primer, usually made of RNA.

Which of the following is not true of a codon? A) It consists of three nucleotides. B) It may code for the same amino acid as another codon. C) It never codes for more than one amino acid. D) It extends from one end of a tRNA molecule. E) It is the basic unit of the genetic code.

D) It extends from one end of a tRNA molecule.

Why might a point mutation in DNA make a difference in the level of protein's activity? A) It might result in a chromosomal translocation. B) It might exchange one stop codon for another stop codon. C) It might exchange one serine codon for a different serine codon. D) It might substitute an amino acid in the active site. E) It might substitute the N-terminus of the polypeptide for the C-terminus.

D) It might substitute an amino acid in the active site.

In an experimental situation, a student researcher inserts an mRNA molecule into a eukaryotic cell after he has removed its 5' cap and poly-A tail. Which of the following would you expect him to find? A) The mRNA could not exit the nucleus to be translated. B) The cell recognizes the absence of the tail and polyadenylates the mRNA. C) The molecule is digested by restriction enzymes in the nucleus. D) The molecule is digested by exonucleases since it is no longer protected at the 5' end. E) The molecule attaches to a ribosome and is translated, but more slowly.

D) The molecule is digested by exonucleases since it is no longer protected at the 5' end.

Which of the following would you expect of a eukaryote lacking telomerase? A) a high probability of somatic cells becoming cancerous B) production of Okazaki fragments C) inability to repair thymine dimers D) a reduction in chromosome length in gametes E) high sensitivity to sunlight

D) a reduction in chromosome length in gametes

Which of the following nucleotide triplets best represents a codon? A) a triplet separated spatially from other triplets B) a triplet that has no corresponding amino acid C) a triplet at the opposite end of tRNA from the attachment site of the amino acid D) a triplet in the same reading frame as an upstream AUG E) a sequence in tRNA at the 3' end

D) a triplet in the same reading frame as an upstream AUG

Transcription in eukaryotes requires which of the following in addition to RNA polymerase? A) the protein product of the promoter B) start and stop codons C) ribosomes and tRNA D) several transcription factors (TFs) E) aminoacyl synthetase

D) several transcription factors (TFs)

For a science fair project, two students decided to repeat the Hershey and Chase experiment, with modifications. They decided to label the nitrogen of the DNA, rather than the phosphate. They reasoned that each nucleotide has only one phosphate and two to five nitrogens. Thus, labeling the nitrogens would provide a stronger signal than labeling the phosphates. Why won't this experiment work? A) There is no radioactive isotope of nitrogen. B) Radioactive nitrogen has a half-life of 100,000 years, and the material would be too dangerous for too long. C) Avery et al. have already concluded that this experiment showed inconclusive results. D) Although there are more nitrogens in a nucleotide, labeled phosphates actually have 16 extra neutrons; therefore, they are more radioactive. E) Amino acids (and thus proteins) also have nitrogen atoms; thus, the radioactivity would not distinguish between DNA and proteins.

E) Amino acids (and thus proteins) also have nitrogen atoms; thus, the radioactivity would not distinguish between DNA and proteins.

Suppose you are provided with an actively dividing culture of E. coli bacteria to which radioactive thymine has been added. What would happen if a cell replicates once in the presence of this radioactive base? A) One of the daughter cells, but not the other, would have radioactive DNA. B) Neither of the two daughter cells would be radioactive. C) All four bases of the DNA would be radioactive. D) Radioactive thymine would pair with nonradioactive guanine. E) DNA in both daughter cells would be radioactive.

E) DNA in both daughter cells would be radioactive.

Which of the following mutations would be most likely to have a harmful effect on an organism? A) a nucleotide-pair substitution B) a deletion of three nucleotides near the middle of a gene C) a single nucleotide deletion in the middle of an intron D) a single nucleotide deletion near the end of the coding sequence E) a single nucleotide insertion downstream of, and close to, the start of the coding sequence

E) a single nucleotide insertion downstream of, and close to, the start of the coding sequence

How do we describe transformation in bacteria? A) the creation of a strand of DNA from an RNA molecule B) the creation of a strand of RNA from a DNA molecule C) the infection of cells by a phage DNA molecule D) the type of semiconservative replication shown by DNA E) assimilation of external DNA into a cell

E) assimilation of external DNA into a cell

Accuracy in the translation of mRNA into the primary structure of a polypeptide depends on specificity in the A) binding of ribosomes to mRNA. B) shape of the A and P sites of ribosomes. C) bonding of the anticodon to the codon. D) attachment of amino acids to tRNAs. E) bonding of the anticodon to the codon and the attachment of amino acids to tRNAs.

E) bonding of the anticodon to the codon and the attachment of amino acids to tRNAs.

The DNA of telomeres has been found to be highly conserved throughout the evolution of eukaryotes. What does this most probably reflect? A) the inactivity of this DNA B) the low frequency of mutations occurring in this DNA C) that new evolution of telomeres continues D) that mutations in telomeres are relatively advantageous E) that the critical function of telomeres must be maintained

E) that the critical function of telomeres must be maintained

Which of the following is the first event to take place in translation in eukaryotes? A) elongation of the polypeptide B) base pairing of activated methionine-tRNA to AUG of the messenger RNA C) binding of the larger ribosomal subunit to smaller ribosomal subunits D) covalent bonding between the first two amino acids E) the small subunit of the ribosome recognizes and attaches to the 5' cap of mRNA

E) the small subunit of the ribosome recognizes and attaches to the 5' cap of mRNA


Conjuntos de estudio relacionados

Midterm Advanced human growth and development

View Set

U.S. Government - Unit 3 - Quiz Questions

View Set

US Government and California politics

View Set

Domain III A: Functions of Management

View Set