Compound Propositions
p ↔ q equivalence
(p → q) ∧ (q → p)
Simplify: (p → r) ∨ (q → r)
(p ∧ q) → r
Simplify: (p → r) ∧ (q → r)
(p ∨ q) → r
Equivalence: Associative laws
(p ∨ q) ∨ r ≡ p ∨ (q ∨ r) (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
Define contradiction.
A compound proposition that is always false p ∧¬p
Define tautology
A compound proposition that is always true, no matter what the truth values of the propositional variables that occur in it p ∨¬p
Define contingency
A compound proposition that is neither a tautology nor a contradiction
Simplify: (p → q) ∧ (p → r)
p → (q ∧ r)
Simplify: (p → q) ∨ (p → r)
p → (q ∨ r)
Simplify ¬p ∨ q
p → q
Simplify ¬q →¬p
p → q
Simplify: (p → q) ∧ (q → p)
p ↔ q
Simplify: (p ∧ q) ∨ (¬p ∧¬q)
p ↔ q
Simplify: ¬p ↔¬q
p ↔ q
Simplify: ¬(p ↔ q)
p ↔¬q
Equivalence:Identity laws
p ∧ T ≡ p p ∨ F ≡ p
Simplify: ¬(p →¬q)
p ∧ q
Simplify: ¬(p → q)
p ∧¬q
Equivalence:Absorption laws
p ∨ (p ∧ q) ≡ p p ∧ (p ∨ q) ≡ p
Equivalence: Distributive laws
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Equivalence: Domination laws
p ∨ T ≡ T p ∧ F ≡ F
Equivalence: Idempotent laws
p ∨ p ≡ p p ∧ p ≡ p
Simplify: ¬p → q
p ∨ q
Equivalence Commutative laws
p ∨ q ≡ q ∨ p p ∧ q ≡ q ∧ p
Equivalence: Negation laws
p ∨¬p ≡ T p ∧¬p ≡ F
Let p and q be compound propositions. Define p ≡ q
two compound propositions always have the same truth value p and q are logically equivalent, p ↔ q is a tautology..
De Morgan's Laws
¬(p ∧ q) ≡ ¬p ∨¬q ¬(p ∨ q) ≡ ¬p ∧¬q
Equivalence: Double negation law
¬(¬p) ≡ p