Data Structures Exam 3

Pataasin ang iyong marka sa homework at exams ngayon gamit ang Quizwiz!

Consider the following code segment. count = 0; for(i = 1; i < n; ++i) for(j = 0; j < n/2; ++j) ++count; cout << count << endl; What is the output of the code segment if n = 10? What is the output value of the code segment in terms of n? (NOT in Big-Oh.)

Consider the following code segment. count = 0; for(i = 1; i < n; ++i) for(j = 0; j < n/2; ++j) ++count; cout << count << endl; What is the output of the code segment if n = 10? ******45******* What is the output value of the code segment in terms of n? (NOT in Big-Oh.) *******(n-1)n/2

A binary search is faster on large lists, but a sequential search is faster on small lists.

False

A binary search is faster on ordered lists and slower on unordered lists.

False

A sequential search of a list assumes that the list is in ascending order.

False

If two sorting algorithms have the same running-time in Big-Oh, say, O(n²), then both algorithms take exactly the same amount of time to sort the same array.

False

The level of the root node of a binary tree is 1.

False

Fill in blanks and complete the following function, which so algorithm. void selectionSort(int a[], int n) { for(int i = 0; i < n - 1; ++i) { int k = i; for(int j = i+1; j < n; ++j) if(a[j] < a[k]) _______________________; int temp = a[k]; a[k] = a[i]; a[i] = temp; } }

Fill in blanks and complete the following function, which so algorithm. void selectionSort(int a[], int n) { for(int i = 0; i < n - 1; ++i) { int k = i; for(int j = i+1; j < n; ++j) if(a[j] < a[k]) ___k=j__________; int temp = a[k]; a[k] = a[i]; a[i] = temp; } }

Fill in blanks and complete the following function, which sorts an array using the bubble sort algorithm. void bubbleSort(int a[], int n) { for(int i = 1; i < n; ++i; for(int j = _____; j < _____; ++j) if(a[j] > a[j + 1]) { int temp = a[j]; a[j] = a[j +1]; a[j+1] = temp; } }

Fill in blanks and complete the following function, which sorts an array using the bubble sort algorithm. void bubbleSort(int a[], int n) { for(int i = 1; i < n; ++i; for(int j = __0__; j < _n-i_; ++j) if(a[j] > a[j + 1]) { int temp = a[j]; a[j] = a[j +1]; a[j+1] = temp; } }

Fill in the blanks and complete the following function, which sorts an array using the insertion sort algorithm. void insertionSort(int a[], int n) { int i, j; int temp; for(i = 1; i < n; ++i) { temp = a[i]; for(j = ______; j >= 0 && a[j] > temp; --j) a[j+1] = a[j]; a[j+1] = _____; } }

Fill in the blanks and complete the following function, which sorts an array using the insertion sort algorithm. void insertionSort(int a[], int n) { int i, j; int temp; for(i = 1; i < n; ++i) { temp = a[i]; for(j = __i-1__; j >= 0 && a[j] > temp; --j) a[j+1] = a[j]; a[j+1] = _temp__; } }

Fill in the blanks and coplete the merge function shown below for merging two linked-lists: while(p1 !=NULL && p2 != NULL) { ________________; ________________; ________________; } else{ ________________; ________________; ________________; } } if(p1 != NULL) ________________; else if(p2 != NULL) ________________; return head; }

Fill in the blanks and coplete the merge function shown below for merging two linked-lists: while(p1 !=NULL && p2 != NULL) { __tail->next=p1_____; __tail=p1__________; __p1=p1->next______; } else{ __tail->next=p2_____; __tail=p2__________; __p2=p2->next______; } } if(p1 != NULL) __tail->next=p1_____; else if(p2 != NULL) __tail->next=p2_____; return head; }

A binary search tree T is either empty or:

T has a special node called the root node: T has two sets of nodes, Lt and Rt, called left subtree and the right subtree of T, respectively: The key in the root node is larger than every key in the left subtree and smaller than every key in the right subtree: Lt and Rt are binary search trees:

Postorder traversal

Traverse left subtree Traverse right subtree Visit Node

Inorder traversal:

Traverse left subtree Visit Node Traverse the right subtree

A binary search of a list assumes that the list is sorted.

True

The inorder traversal of a binary search tree outputs the keys in ascending order.

True

The running-time of Mergesort is O(n log n), where n is the input size.

True

The running-time of bubble sort is 0(n²), where n is the input (i.e., array) size.

True

Preorder traversal

Visit Node Traverse left subtree Traverse right subtree

Sort the following list of integers sorted in an array to the first partition using quick sort. 20, 59, 83, 36, 28, 13, 23, 14, 98, 17.

20, 17, 14, 23, 13, 28, 36, 83, 98, 59


Kaugnay na mga set ng pag-aaral

The Iroquois Creation Myth: "The World on Turtle's Back"

View Set

Northeast, Midwest, South, and West

View Set

PARAGRAPHS: Identifying Main Point and Support in Paragraphs, paragraph editing

View Set

Module 12.1 Intro to Nursing Standards

View Set

Behavioral Modification-Chapter 10 Practice Test

View Set

Understanding Business Chapter 11 1003

View Set

Unit 5: Nutrition Essentials 3rd Edition

View Set