Trig Formulas and Identities
Put everything in terms of Sin and cos
1st Step for Simplifying:
Look out for identities
2nd Step for Simplifying:
When you have a fraction inside another fraction rewrite as division and multiply reciprocal
3rd Step for Simplifying:
Put fractions together by getting a common denominator
4th Step for Simplifying:
Stuck? Start over
5th Step for Simplifying:
sin(pi/2-ø)
Cofunction Formulas: cosø
tan(pi/2-ø)
Cofunction Formulas: cotø
sec(pi/2-ø)
Cofunction Formulas: cscø
csc(pi/2-ø)
Cofunction Formulas: secø
cos(pi/2-ø)
Cofunction Formulas: sinø
cot(pi/2-ø)
Cofunction Formulas: tanø
cos(2ø)
Double Angle Formulas: 1-2sin^2ø
cos(2ø)
Double Angle Formulas: 2cos^2ø-1
sin(2ø)
Double Angle Formulas: 2sinøcosø
cos(2ø)
Double Angle Formulas: cos^2ø-sin^2ø
cosø
Even/Odd Formulas: cos(-ø)
-cotø
Even/Odd Formulas: cot(-ø)
-cscø
Even/Odd Formulas: csc(-ø)
secø
Even/Odd Formulas: sec(-ø)
-sinø
Even/Odd Formulas: sin(-ø)
-tanø
Even/Odd Formulas: tan(-ø)
csc^2ø
Pythagorean Identities: 1+cot^2ø
1-sin^2ø
Pythagorean Identities: cos^2ø
1-cos^2ø
Pythagorean Identities: sin^2ø
1
Pythagorean Identities: sin^2ø+cos^2ø
sec^2ø
Pythagorean Identities: tan^2ø+1
1/secø
Reciprocal Identities: cosø
1/tanø
Reciprocal Identities: cotø
1/sinø
Reciprocal Identities: cscø
1/cosø
Reciprocal Identities: secø
1/cscø
Reciprocal Identities: sinø
1/cotø
Reciprocal Identities: tanø
Odd
Symmetry over the origin
Even
Symmetry over the y-axis
sinø/cosø
Tangent and Cotangent Identities: Tanø
cosø/sinø
Tangent and Cotangent Identities: cotø