trigonometry
Find the exact value of tan(75) using the identity tan (A/2) = sin(A)/1+cos(A) (Page 18)
(2+sqrt(3))/1
cos(173)*cos(83)+sin(173)*sin(83) (Page 9 )
0
Find the exact value of each expression: tan(13pi/12) (Page 12 )
2-sqrt(3)
Suppose that A and B are angles in standard position, with cos A = -7/25, with pi<A<3pi/2, and sin B = -3/5 with 3pi/2<B<2pi. Find the following. the quadrant of A-B (Page 13 )
Quadrant 4
Simplify the expression: 2cos^2(5x)-1 (Page 16)
cos(10x)
Given sin (x) = 8/17 and cos (x)<0, find sin (2x),cos(2x), and tan(2x) (Page 15)
cos(2x) = 161/289 sin(2x) = -240/289 tan(2x) = -240/161
Given cos(x) = -3/7, with pi<x<3pi/2. Find sin (x/2),cos(x/c), and tan (x/2) (page 19)
cos(x/2) = -sqrt(14)/7 sin(x/2) = sqrt(35)/7 tan(x/2) = -sqrt(10)/2
Find y in the equation y = sin^-1(sqrt(2)) (Page 22)
does not exist
Find the values of the six trigonometric functions of x if cos(2x) = -12/13 and 180<x<270. (Page 15)
sin(x) = -5*sqrt(26)/26 csc(x) = -sqrt(26)/5 cos(x) = -sqrt(26)/26 sec(x) = -sqrt(26) tan(x) = 5 cot(x) = 1/5
Find the exact value of sin (22.5) using the half-angle identity for sin (Page 18)
sqrt(2-sqrt(2))/2
Find y in the equation y = arccos(0) (Page 23)
y = pi/2
Find y in the equation y = arcsin(sqrt(3)/2) (Page 22)
y = pi/3
Find the exact value of the expression: cos((17pi)/12) (Page 9 )
(sqrt(2) - sqrt(6)) ------------------- 4
Find the exact value of each expression: sin(-15) (Page 12 )
(sqrt(2)-sqrt(6)) ----------------- 4
Suppose that cos(x) = 15/17, sin(y) = 15/17. And both x and y are in qudrant 4. Find cos(x-y) (Page 11 )
297/425
Solve 3arctan(x) = pi (Page 35)
x = sqrt(3)
Find y in the equation y = sin^-1(-1/2) (Page 22)
y = -pi/6
Find y in the equation y = cos^-1(1/2) (Page 23)
y = pi/3
Solve the equation 3tan(x-sqrt(3)) = 0 for all solutions (Page 29)
{30 + 180n, where n is any integer}
Solve 2cos^2(x) - 2sin^2(x) + 1 =0. for all solutions (Page 34)
{60+180n, 120 + 180n, where n is any integer}
Solve 2cos(x/2)-sqrt(2)=0 for all solutions (Page 33)
{pi/2 + 6*n*pi where n is any integer}
Find the exact value of the expression: cos(-75) (Page 9 )
(sqrt(6) - sqrt(2)) ------------------- 4
Simplify the expression: sin(165)cos(165) (Page 16)
-1/4
Suppose that A and B are angles in standard position, with cos A = -7/25, with pi<A<3pi/2, and sin B = -3/5 with 3pi/2<B<2pi. Find the following. sin(A-B) (Page 13 )
-117/125
Find the exact value of each expression: (tan(100)-tan(70)) -------------------- 1+tan(100)tan(70) (Page 12 )
sqrt(3)/3
Find the degree measure of x in the following x = csc^-1(-sqrt(2)) (Page 25)
x = -45
Solve y = 4 tan(3x) for x, where x is restricted to the interval (-pi/6,pi/6) (Page 35)
x = 1/3tan^-1(y/4)
Solve 3sin^2(x) - sin(x) - 2 = 0 over the inteval [0,2pi) (Page 30)
x = 2.412, 5.553, pi/2
Solve sec^-1(x) = csc^-1(2) (Page 36)
x = 2sqrt(3)/3
Solve the equation 3tan(x-sqrt(3)) = 0 in the intervals[0,360) (Page 29)
x = 30(Quadrant 1), 210(Quadrant 3)
Find the degree measure of x in the following x = arctan(sqrt(3)) (Page 25)
x = 60
Solve 2cos^2(x) - 2sin^2(x) + 1 =0. Over the interval [0,360) (Page 34)
x = 60,120,240,300
Solve cos(x)cot(x) = -cos(x) over the interval [0,360) (Page 29)
x = 90,270 x = 135, 315
Solve 2cos(x/2)-sqrt(2)=0 over the interval [0,2pi) (Page 33)
x = pi/2, 7pi/2
Solve cos(2x) = sin(x) over the interval [0,2pi) (Page 33)
x = pi/6, 5pi/6 x = 3pi/2
Suppose that A and B are angles in standard position, with cos A = -7/25, with pi<A<3pi/2, and sin B = -3/5 with 3pi/2<B<2pi. Find the following. tan(A-B) (Page 13 )
-117/44