Abeka Algebra 11 Test 2

Réussis tes devoirs et examens dès maintenant avec Quizwiz!

What type of linear equation is x+1 = x+1

identity

Simplify: (show your work) i¹⁵

i¹⁵ 15/4 = 3 remainder 3 = i³ = -i

What would a rational equation be multiplied by to clear the equation of fractions?

least common denominator (LCD)

Which of the following correctly states the types of real solutions for the discriminant 16? a. unequal, rational b. unequal, irrational c. equal, rational d. equal, irrational

unequal, rational

Which of the choices correctly translates the following problem? "The area of a yard is 24 square feet. If the width is 3 feet less than the length, state the dimensions of the yard." a. x(3x)=24 b. x(x-3)=24 c. 3x-24=x d. x(x-24)=3

x(x-3)=24

Solve inequality and graph solution. Write solution as an interval(show your work). |x+1|>3 <|−−|−−|−−|−|−|−|−|-|-|-|-|> -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

x+1>3 or x-1 <-3 x>2.............x<-4 (-∞, -4) or (2, ∞) Interval...........Test Point...........Check..............Solution? (-∞, 4)................... -5 .................. |(-5)+1|>3 ............... yes ......................................................... |-4|>3 .......................................................... 4>3 (-4, 2) .................... 0..................... |(0)+1|>3 ................. no ............................................................|1|>3 ............................................................1>3 (2, ∞)........................ 3 ................... |(3)+1|>3 ..................yes ........................................................... |4|>3 ........................................................... 4>3 (-∞, 4) or (2, ∞)

Solve each quadratic equation (show your work). x²+8x+4=0

x²+8x+4=0 x²+8+16 = -4+16 (x+4)² = 12 x+4 = ±2√3 x = -4±2√3

Solve each quadratic equation (show your work). x²-15=1

x²-15=1 x²=16 x=±4

Solve each quadratic equation (show your work). x²-3x-10=0

x²-3x-10=0 (x-5)(x+2)=0 x-5=0 x=5 x+2=0 x=-2 x=-2, 5

Solve equation: (show your work) ½z+3z=⁵/₃z-11

½z+3z=⁵/₃z-11 3z+18z=10z-66 21z=10z-66 11z=-66 z=-6

Simplify: (show your work) (2+7i)-(4-8i)

(2+7i)-(4-8i) = 2+7i-4+8i = 2-4_7i+8i = -2+15i

Simplify: (show your work) (6-2i)(1+i)

(6-2i)(1+i) = 6+6i-2i² = 6+4i+2 = 8+4i

When simplifying the expression 3i/2-i, by which of the following would you multiply both numerator and denominator? a. i-2 b. -2i c. 2+i d. 2i

2+i

Solve equation: (show your work) 2/x = 3/x+1 + 2/x+1

2/x = 3/x+1 + 2/x+1 x(x+1) (²/x) = 3x+2x 2x+2 = 5x -3x = -2 x = ²/₃

Solve linear equation or inequality for x (show your work). 2|x+2|=4

2|x+2|=4 |x+2|=2 x+2=2 x=0 -(x+2)=2 x+2=-2 x=-4 x=-4, 0

Simplify: (show your work) 3/6+i

3/6+i = 3/6+i * 6-i/6-i = 18-3i/36-6i+6i-i² = 18-3i/36+1 = 18-3i/37 or 18/37-3/37 i

Solve equation: (show your work) 3/x-2 = 8/x+6

3/x-2 = 8/x+6 8x-16 = 3x+18 5x = 34 x = 34/5 or 6 ⁴/₅

Solve linear equation or inequality for x (show your work). ax=2x+5

ax=2x+5 x(a-2)=5 x= 5/a-2

What are the values for a, b, and c in the equation -2x=-3x²+11? a. a=3; b=-2; c=-11 b. a=-3; b=-11; c=2 c. a=11; b=3; c=-2 d. a=11; b=-2; c=-3

a=3; b=-2; c=-11

Which of the following correctly states the number of solutions for |3x+20|>-12? a. no solutions b. all real numbers c. one solution d. two solutions

all real numbers

Solve word problem: (show your work) The denominator of a fraction is 4 more than its numerator. If the fraction equals ¹/₃, what is the fraction?

x/x+4 = 1/3 x+4 = 3x -2x = -4 x = 2 Numerator = x=2 Denominator = x+4 =(2)+4 =6 Fraction = 2/6

Solve each quadratic equation (show your work). x²+3x+8=0 √ ±

x²+3x+8=0 a = 1, b=3, c=8 x=-b±√b²-4ac / 2a x=-(3)±√(3)²-4(1)(8) / 2(1) x=-3±√9-32 / 2 x=-3±√-23 / 2 x=-3±i√-23 / 2

Solve inequality and graph solution. Write solution as an interval (show your work). -8x<8 <|−−|−-|--|-| --|-|-|-|-|-|-|-|> -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-8x<8 x>-1, (-1, ∞) Interval...........Test Point...........Check..............Solution? (-∞, -1)................... -2 ................-8(-2)<8 ................. no .......................................................... 16<8 (-1, ∞)....................... 2 ...................-8(2)<8 ............... yes ................................................ -16<8 (-1, ∞)

Solve inequality and graph solution. Write solution as an interval (show your work). 4≤2x≤10 <|−−|−−|−−|−|−|−|−|-|-|-|-|> -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6.

2≤x≤5, [2, 5] Interval...........Test Point...........Check..............Solution? (-∞, 2)................... 0 ..................4≤2(0)≤10 ................. no ................................................4≤(0)≤10 [2, 5]....................... 3 ...................4≤2(3)≤10 ............... yes ...................................................4≤6≤10 [5, ∞]....................... 6 .................. 4≤2(6)≤10 ............... no .................................................. 4≤12≤10 [2, 5]

Solve linear equation or inequality for x (show your work). 3x-4=8

3x-4=8 3x=12 x=4

What is the imaginary form of √-16?

4i

Rewrite 2x + 4x² = 9 in standard form.

4x² + 2x - 9 = 0

What type of interval best describes -2≤x<8? a. unbounded, open b. unbounded, closed c. bounded, open d. bounded, mixed

bounded, mixed

What type of number contains both a real part and an imaginary part, for example, 7 - 3i?

complex

Solve equation: (show your work) √3x +1 = 4

√3x +1 = 4 √3x = 3 3x = 9 x = 3

Solve equation: (show your work) √5x+5 = √4x+1

√5x+5 = √4x+1 (√5x+5)² = (√4x+1)² 5x+5 = 4x+2√4x+1 x+4 = 2√4x (x+4)² = (2√4x)² x²+8x+16 = 16x x²-8x+16 = 0 (x-4)(x-4) = 0 x = 4


Ensembles d'études connexes

(AAA) How to Drive Chapter 1-5 test review

View Set

section 8 unit 2: Elements of a Valid Contract

View Set