ASTRONOMY Chapter 9

Réussis tes devoirs et examens dès maintenant avec Quizwiz!

Which two properties are most important in determining the surface temperature of a planet? A) composition and distance from the Sun B) size and chemical composition C) size and atmosphere D) internal temperature and atmosphere E) distance from the Sun and atmosphere

E

Why does the Moon have a layer of powdery "soil" on its surface? A) Large impacts shattered lunar rock to make this soil. B) The soil exists because the Moon accreted from powdery material after a giant impact blasted Earth. C) Volatiles escaping from the Moon's interior bubble upward and make the soil. D) The soil is the result of the same processes that make powdery sand on Earth. E) It's the result of gradual erosion by micrometeorites striking the Moon.

E

All the following statements about Venus are true. Which one offers evidence of a global repaving about a billion years ago? A) Venus has relatively few impact craters and these craters are distributed fairly evenly over the entire planet. B) Venus has many circular features, called coronae, which appear to be tectonic in origin. C) Venus's largest features are three elevated regions that look somewhat like continents. D) Venus appears to lack any water that could lubricate the flow of rock in its crust and mantle.

A

Based on its surface features, the most important event on Venus in the past billion years or so was A) a global "repaving" that erased essentially all the surface features that had existed earlier. B) the eruption of a giant volcano that formed one of Venus's "continents." C) the impact of an unusually large asteroid that left a deep scar on one side of the planet. D) the onset of mantle convection, which caused Venus's lithosphere to split into plates like those on Earth.

A

Deep trenches in the ocean mark places where A) one plate slides under another, returning older crust to the mantle. B) plates pull apart, leaving great rifts in the crust. C) hot mantle material rises upward and spreads sideways, pushing the plates apart. D) plates push together, creating ocean mountain chains. E) plates slip sideways relative to one another.

A

Heat escapes from a planet's surface into space by thermal radiation. Planets radiate almost entirely in the wavelength range of the A) infrared. B) radio. C) visible. D) ultraviolet. E) none of the above

A

How did the lunar maria form? A) Large impacts fractured the Moon's lithosphere, allowing lava to fill the impact basins. B) The early bombardment created heat that melted the lunar surface in the regions of the maria. C) Volatiles escaping from the Moon's interior heated and eroded the surface in the regions of the maria. D) The giant impact that created the Moon left smooth areas that we call the maria. E) The maria are the result of gradual erosion by micrometeorites striking the Moon.

A

How fast do plates move on Earth? A) a few centimeters per year B) a few millimeters per century C) a few kilometers per century D) quite fast, but only during earthquakes E) about 1 mile per hour

A

In general, which things below are affected by a magnetic field? A) charged particles or magnetized materials (such as iron) B) rocks of all types C) iron-bearing minerals only D) bases and liquids

A

In the context of planetary geology, what do we mean by outgassing? A) the release by volcanism of gases that had been trapped in a planetary interior B) the loss of atmospheric gas to outer space C) another name for a volcanic eruption D) the evaporation of water that adds water vapor (a gas) to an atmosphere

A

In the context of plate tectonics, what is a subduction zone? A) a place where a seafloor plate is sliding under a continental plate B) a place where two plates are slipping sideways against one another C) a place where two plates are pulling apart D) a place where two continental plates are colliding

A

Many scientists suspect that Venus has a stronger and thicker lithosphere than Earth. If this is true, which of the following could explain it? A) the high surface temperature that has "baked out" all the liquid water from Venus's crust and mantle B) the smaller size of Venus, which has allowed it to lose much more internal heat than Earth C) the slow rotation of Venus D) the apparent lack of plate tectonics on Venus

A

Most of the Moon's surface is densely covered with craters, but we find relatively few craters within the lunar maria. What can we conclude? A) The maria formed after the heavy bombardment ended. B) The maria formed within the past 1 billion years. C) The regions of the maria were hit by fewer impacts than the densely cratered regions. D) Erosion affects the maria more than it affects other regions of the Moon.

A

Olympus Mons is A) a huge shield volcano on Mars. B) a huge stratovolcano on Venus. C) a large lava plain on the Moon. D) a great canyon on Mars.

A

Olympus Mons is a A) shield volcano on Mars. B) stratovolcano on Mercury. C) large lava plain on the Moon. D) shield volcano on Venus. E) stratovolcano on the Moon.

A

Spacecraft have landed on all the terrestrial worlds except A) Mercury. B) Venus. C) Moon. D) Mars.

A

Suppose we had a device that allowed us to see Earth's interior. If we looked at a typical region of the mantle, what would we see happening? A) not much—on human time scales, the mantle looks like solid rock B) hot molten rock rising upward throughout the mantle and cool, solid rock falling downward C) a rapid, up-and-down churning of the material in the mantle D) dense metals falling downward while low-density rock rises upward

A

The choices below describe four hypothetical planets. Which one would you expect to have the hottest interior? (Assume the planets orbit a star just like the Sun and that they are all the same age as the planets in our solar system.) A) Size: same as the Moon. Distance from Sun: same as Mars. Rotation rate: once every 10 days. B) Size: twice as big as Earth. Distance from Sun: same as Mercury. Rotation rate: once every 6 months. C) Size: same as Mars. Distance from Sun: same as Earth. Rotation rate: once every 18 hours. D) Size: same as Venus. Distance from Sun: same as Mars. Rotation rate: once every 25 hours.

A

The choices below describe four hypothetical planets. Which one would you expect to have the most features of erosion? (Assume the planets orbit a star just like the Sun and that they are all the same age as the planets in our solar system.) A) Size: same as Venus. Distance from Sun: same as Mars. Rotation rate: once every 25 hours. B) Size: same as the Moon. Distance from Sun: same as Mars. Rotation rate: once every 10 days. C) Size: same as Mars. Distance from Sun: same as Earth. Rotation rate: once every 18 hours. D) Size: twice as big as Earth. Distance from Sun: same as Mercury. Rotation rate: once every 6 months.

A

The main process by which heat flows upward through the lithosphere is A) conduction. B) convection. C) radiation. D) accretion. E) differentiation.

A

The reason that small planets tend to lose interior heat faster than larger planets is essentially the same as the reason that A) a large baked potato takes longer to cool than a small baked potato. B) gas bubbles form and rise upward in boiling water. C) Earth contains more metal than the Moon. D) thunderstorms tend to form on hot summer days.

A

What are the basic requirements for a terrestrial world to have a global magnetic field? A) a core layer of molten, convecting material and sufficiently rapid rotation B) a metal core and rapid rotation C) a metal core, a rocky mantle, and sufficiently rapid rotation D) a core that has a molten layer and a mantle that has convection

A

What do we mean when we say that the terrestrial worlds underwent differentiation? A) When their interiors were molten, denser materials sank toward their centers and lighter materials rose toward their surfaces. B) The five terrestrial worlds all started similarly but ended up looking quite different. C) Their surfaces show a variety of different geological features resulting from different geological processes. D) They lost interior heat to outer space.

A

What drives the motion of the tectonic plates on Earth? A) convection cells in the mantle B) lava flows in trenches along the sea floor C) the Coriolis force D) Earth's magnetic field E) tidal forces

A

What is differentiation in planetary geology? A) the process by which gravity separates materials according to density B) the process by which different types of minerals form a conglomerate rock C) any process by which a planet's surface evolves differently from another planet's surface D) any process by which one part of a planet's surface evolves differently from another part of the same planet's surface E) any process by which a planet evolves differently from its moons

A

What is the fundamental reason that Mars, unlike Earth, has become virtually geologically dead? A) its small size compared to Earth B) its large size compared to Earth C) its farther distance than Earth to the Sun D) its closer distance than Earth to the Sun E) its rapid rotation compared to Earth F) its slow rotation compared to Earth

A

Which of the following describes impact cratering? A) the excavation of bowl-shaped depressions by asteroids or comets striking a planet's surface B) the eruption of molten rock from a planet's interior to its surface C) the disruption of a planet's surface by internal stresses D) the wearing down or building up of geological features by wind, water, ice, and other phenomena of planetary weather

A

Which of the following is an example of convection? A) warm air expanding and rising while cooler air contracts and fall B) different kinds of material separating by density, like oil and water C) rocks sinking in water D) gas bubbling upward through a liquid

A

Which of the following is not an example of tectonics? A) the gradual disappearance of a crater rim as a result of wind and rain B) the formation of a cliff when the lithosphere shrinks C) the slow movement of Earth's lithospheric plates D) the stretching of the crust by underlying mantle convection

A

Which of the following is not generally true of all the terrestrial world lithospheres? A) The lithosphere is broken into a set of large plates that float upon the softer rock below. B) Rock in the lithosphere is stronger than rock beneath it. C) The lithosphere extends from somewhere in the mantle all the way to the surface. D) The thickness of the lithosphere depends on interior temperature, with cooler interiors leading to thicker lithospheres.

A

Why are there fewer large craters on the seafloor than on the continents? A) The seafloor crust is younger than the continental crust. B) The oceans slow large impactors and prevent them from making craters. C) The oceans erode away craters faster than erosion processes on land. D) Large impactors primarily strike land masses. E) Large impactors aim for life-forms such as dinosaurs.

A

Why are there fewer large impact craters on the Earth's seafloor than on the continents? A) Seafloor crust is younger than continental crust, so it has had less time in which to suffer impacts. B) The oceans slow large impactors and prevent them from making craters. C) Erosion erases impact craters must faster on the ocean bottom than on land. D) Most impacts occur on the land.

A

Why is continental crust lower in density than seafloor crust? A) Continental crust is made from remelted seafloor crust and therefore only the lower-density material rises to form it. B) Continental crust is made from volcanic rock called basalt, which is lower in density than what the seafloor crust is made from. C) Continental crust is made of rock, while seafloor crust has more metals. D) Seafloor crust is more compact due to the weight of the oceans, but it is made of the same material as the continental crust. E) Continental crust is actually denser than seafloor crust.

A

How does seafloor crust differ from continental crust? A) Seafloor crust is thicker, older, and higher in density. B) Seafloor crust is thinner, younger, and higher in density. C) Seafloor crust is thinner, older, and lower in density. D) Seafloor crust is thicker, older, and lower in density. E) Seafloor crust is thicker, younger, and lower in density.

B

Recent evidence suggests that Mars once had a global magnetic field. Assuming this is true, which of the following could explain why Mars today lacks a global magnetic field like that of Earth? A) Mars rotates much slower than Earth. B) Mars's interior has cooled so much its molten core layer no longer undergoes convection. C) The Martian core is made of rock, while Earth's core is made of metal. D) Mars is too far from the Sun to have a global magnetic field.

B

Shallow-sloped shield volcanoes are made from lava that A) is as runny as liquid water. B) has a medium viscosity. C) has a high viscosity. D) can have any viscosity.

B

Suppose we use a baseball to represent Earth. On this scale, the other terrestrial worlds (Mercury, Venus, the Moon, and Mars) would range in size approximately from that of A) a dust speck to a golf ball. B) a golf ball to a baseball. C) a dust speck to a basketball. D) a golf ball to a beach ball.

B

The cores of the terrestrial worlds are made mostly of metal because A) the terrestrial worlds as a whole are made mostly of metal. B) metals sunk to the centers a long time ago when the interiors were molten throughout. C) the core contained lots of radioactive elements that decayed into metals. D) over billions of years, convection gradually brought dense metals downward to the core.

B

The geysers and hot springs of Yellowstone National Park result from A) thin continental crust separating and creating a rift valley. B) plumes of hot mantle rising in a hot spot within a plate. C) plates that have slipped sideways relative to each other, creating a fault. D) a plate that has run up against an existing continental plate. E) a fault.

B

The processes responsible for virtually all surface geology are A) convection, conduction, and radiation. B) impact cratering, volcanisms, tectonics, and erosion. C) accretion, differentiation, and radioactive decay. D) eruptions, lava flows, and outgassing.

B

The relatively few craters that we see within the lunar maria A) were formed by impacts that occurred before those that formed most of the craters in the lunar highlands. B) were formed by impacts that occurred after those that formed most of the craters in the lunar highlands. C) were created by the same large impactor that led to the formation of the maria. D) are volcanic in origin, rather than from impacts. E) are sinkholes that formed when sections of the maria collapsed.

B

The three principal sources of internal heat of terrestrial planets are A) conduction, differentiation, and accretion. B) accretion, differentiation, and radioactivity. C) accretion, differentiation, and eruption. D) convection, differentiation, and eruption. E) conduction, convection, and eruption.

B

What are the two geological features that appear to set Earth apart from all the other terrestrial worlds? A) shield volcanoes and plate tectonics B) plate tectonics and widespread erosion C) significant volcanism and tectonics D) mantle convection and a thick atmosphere

B

What is basalt? A) any substance that evaporates easily and is a gas, liquid, or ice on Earth B) a type of rock that makes relatively low-viscosity lava C) a type of metal that tends to create stratovolcanoes when eruptions occur D) a type of mineral that is the main ingredient of sea salt E) another name for lava

B

When we say that a liquid has a high viscosity, we mean that it A) is runny like water. B) flows slowly like honey. C) is very dark in color. D) is very light in color. E) conducts electricity.

B

Which of the following best describes convection? A) It is the process by which rocks sink in water. B) It is the process in which warm material expands and rises while cool material contracts and falls. C) It is the process in which warm material gets even warmer and cool material gets even cooler. D) It is the process in which a liquid separates according to density, such as oil and water separating in a jar. E) It is the process in which bubbles of gas move upward through a liquid of the same temperature.

B

Which of the following describes volcanism? A) the excavation of bowl-shaped depressions by asteroids or comets striking a planet's surface B) the eruption of molten rock from a planet's interior to its surface C) the disruption of a planet's surface by internal stresses D) the wearing down or building up of geological features by wind, water, ice, and other phenomena of planetary weather

B

Which of the following most likely explains why Venus does not have a strong magnetic field? A) It does not have a metallic core. B) Its rotation is too slow. C) It is too close to the Sun. D) It is too large. E) It has too thick an atmosphere.

B

Which of the terrestrial worlds has the strongest magnetic field? A) Mars B) Earth C) the Moon D) Venus E) Mercury

B

Why do we think Mercury has so many tremendous cliffs? A) They were probably carved in Mercury's early history by running water. B) They were probably formed by tectonic stresses when the entire planet shrank as its core cooled. C) They probably formed when a series of large impacts hit Mercury one after the other. D) They are almost certainly volcanic in origin, carved by flowing lava. E) They represent one of the greatest mysteries in the solar system, as no one has suggested a reasonable hypothesis for their formation.

B

From center to surface, which of the following correctly lists the interior layers of a terrestrial world? A) mantle, core, crust B) mantle, crust, core C) core, mantle, crust D) core, crust, lithosphere

C

How does seafloor crust differ from continental crust? A) Seafloor crust is thicker, older, and higher in density. B) Seafloor crust is thicker, younger, and lower in density. C) Seafloor crust is thinner, younger, and higher in density. D) Seafloor crust is thinner, older, and lower in density.

C

How large is an impact crater compared to the size of the impactor? A) the same size B) 10-20 percent larger C) 10 times larger D) 100 times larger E) 1,000 times larger

C

How long, approximately, do geologists estimate it takes for the entire seafloor to be replaced due to plate tectonics? A) 2 million years B) 20 million years C) 200 million years D) 2 billion years E) longer than the age of the solar system

C

On average, how fast do the plates move on Earth? A) about 1 mile per hour B) a few kilometers per year C) a few centimeters per year D) a few millimeters per century

C

Ridges in the middle of the ocean are places where A) one plate slides under another, returning older crust to the mantle. B) hot mantle material rises upward, creating volcanic islands. C) hot mantle material rises upward and spreads sideways, pushing the plates apart. D) plates push together, creating ocean mountain chains. E) plates slip sideways relative to one another.

C

Steep-sided stratovolcanoes are made from lava that A) is as runny as liquid water. B) has a medium viscosity. C) has a high viscosity. D) can have any viscosity.

C

The choices below describe four hypothetical planets. Which one's surface would you expect to be most crowded with impact craters? (Assume the planets orbit a star just like the Sun and that they are all the same age as the planets in our solar system.) A) Size: twice as big as Earth. Distance from Sun: same as Mercury. Rotation rate: once every 6 months. B) Size: same as Mars. Distance from Sun: same as Earth. Rotation rate: once every 18 hours. C) Size: same as the Moon. Distance from Sun: same as Mars. Rotation rate: once every 10 days. D) Size: same as Venus. Distance from Sun: same as Mars. Rotation rate: once every 25 hours.

C

The lithosphere of a planet is the layer that consists of A) material above the crust. B) material between the crust and the mantle. C) the rigid rocky material of the crust and uppermost portion of the mantle. D) the softer rocky material of the mantle. E) the lava that comes out of volcanoes.

C

The major processes that heat the interiors of the terrestrial worlds are A) (1) Heat deposited as the planets were built from planetesimals; (2) heat of accretion; (3) heat that came from the gravitational potential energy of incoming planetesimals. B) (1) Heat of accretion; (2) heat from convection; (3) heat from thermal radiation. C) (1) Heat deposited as the planets were built from planetesimals; (2) heat deposited as the planets underwent differentiation; (3) heat released by radioactive decay. D) (1) Volcanism; (2) tectonics; (3) erosion.

C

The polar caps on Mars are composed of A) pure solid carbon dioxide. B) pure water ice. C) mostly solid carbon dioxide and some water ice. D) mostly water ice and some solid carbon dioxide. E) There are no polar caps on Mars.

C

The terrestrial planet cores contain mostly metal because A) the entire planets are made mostly of metal. B) metals condensed first in the solar nebula and the rocks then accreted around them. C) metals sank to the center during a time when the interiors were molten throughout. D) radioactivity created metals in the core from the decay of uranium. E) convection carried the metals to the core.

C

Volcanism is more likely on a planet that A) is closer to the Sun. B) is struck often by meteors and solar system debris. C) has high internal temperatures. D) doesn't have an atmosphere or oceans.

C

What process has shaped Earth's surface more than any other? A) impact cratering B) volcanism C) plate tectonics D) erosion E) acid rain

C

What type of stresses broke Earth's lithosphere into plates? A) impacts of asteroids and planetesimals B) internal temperature changes that caused the crust to expand and stretch C) the circulation of convection cells in the mantle, which dragged against the lithosphere D) cooling and contracting of the planet's interior, which caused the mantle and lithosphere to be compressed E) volcanism, which produced heavy volcanoes that bent and cracked the lithosphere

C

Which internal energy source is the most important in continuing to heat the terrestrial planets today? A) accretion B) differentiation C) radioactivity D) tidal heating E) all of the above

C

Which of the following describes tectonics? A) the excavation of bowl-shaped depressions by asteroids or comets striking a planet's surface B) the eruption of molten rock from a planet's interior to its surface C) the disruption of a planet's surface by internal stresses D) the wearing down or building up of geological features by wind, water, ice, and other phenomena of planetary weather

C

Which of the following does not provide evidence that Mars once had flowing water? A) the presence of what looks like dried-up riverbeds B) the presence of impact craters that appear to have formed in mud C) the presence of vast canals discovered in the late 1800s by Giovanni Schiaparelli and mapped by Percival Lowell D) rocks of many different types jumbled together, as would occur if there had once been a great flood in the region, found by the Mars Pathfinder E) some very old craters that appear to have been eroded by rain

C

Which of the following has virtually no effect on the structure of a planet? A) its composition B) its size C) its magnetic field D) its mass

C

Which of the following is the underlying reason why Venus has so little wind erosion? A) its small size B) its thick atmosphere C) its slow rotation D) its relatively close distance to the Sun

C

Which of the following most likely explains why Venus does not have a global magnetic field like Earth? A) It does not have a metallic core. B) Unlike Earth, Venus does not have a liquid outer core. C) Its rotation is too slow. D) It has too thick of an atmosphere.

C

Which of the following regions was the result of plumes of hot mantle rising in a hot spot within a plate? A) Alaska's Aleutian Islands B) Japan and the Philippines C) the islands of Hawaii D) the volcano Mount St. Helens E) all of the above

C

Why does Earth have the strongest magnetic field among the terrestrial worlds? A) It is the only one that has a metallic core. B) It rotates much faster than any other terrestrial world. C) It is the only one that has both a partially molten metallic core and reasonably rapid rotation. D) It is by far the largest terrestrial world. E) It is the most volcanically active world.

C

Why does the Moon have a layer of "powdery soil" on its surface? A) Recent, large impacts shattered lunar rock to make this soil. B) It is made by the same processes that make powdery sand on Earth. C) It is the result of countless tiny impacts by small particles striking the Moon. D) It exists because the Moon accreted from powdery material after a giant impact blasted Earth.

C

Why is Earth's continental crust lower in density than seafloor crust? A) Continental crust is made from a low-density volcanic rock called basalt. B) Continental crust comes from volcanoes while seafloor crust comes from geysers. C) Continental crust is made as the lowest-density seafloor crust melts and erupts to the surface near subduction zones. D) Continental crust comes from Earth's inner core while seafloor crust comes from the outer core.

C

Which of the following does not have a major effect in shaping planetary surfaces? A) impact cratering B) volcanism C) tectonics D) erosion E) magnetism

E

Which of the following worlds have the thinnest lithospheres? A) Earth and the Moon B) Venus and the Moon C) Mercury and Venus D) Earth and Mars E) Earth and Venus

E

A planet is most likely to have tectonic activity if it has A) low surface gravity. B) high surface gravity. C) low internal temperature. D) high internal temperature. E) a dense atmosphere.

D

A terrestrial world's lithosphere is A) a thin layer of rock that lies between the mantle and crust. B) the interior region in which the planet's magnetic field is generated. C) a layer of hot, molten rock encompassing the core and part of the mantle. D) a layer of relatively strong, rigid rock, encompassing the crust and part of the mantle

D

Based on all we know about the terrestrial worlds, what single factor appears to play the most important role in a terrestrial planet's geological destiny? A) its composition B) its distance from the Sun C) whether or not it has liquid water D) its size

D

How have we been able to construct detailed maps of surface features on Venus? A) by studying Venus from Earth with powerful telescopes B) by studying Venus with powerful optical telescopes on spacecraft that were sent to orbit Venus C) by making computer models of geological processes on Venus D) by using radar from spacecraft that were sent to orbit Venus E) by landing spacecraft on the surface for close-up study

D

Rank the five terrestrial worlds in order of size from smallest to largest. A) Mercury, Venus, Earth, Moon, Mars B) Mercury, Moon, Venus, Earth, Mars C) Moon, Mercury, Venus, Earth, Mars D) Moon, Mercury, Mars, Venus, Earth E) Mercury, Moon, Mars, Earth, Venus

D

The Caloris Basin on Mercury covers a large region of the planet, but few smaller craters have formed on top of it. From this we conclude that A) erosion destroyed the smaller craters that formed on the basin. B) Mercury's atmosphere prevented smaller objects from hitting the surface. C) only very large impactors hit Mercury's surface in the past. D) the Caloris Basin formed toward the end of the solar system's period of heavy bombardment. E) the Caloris Basin was formed by a volcano.

D

The core, mantle, and crust of a planet are defined by differences in their A) geological activity. B) temperature. C) strength. D) composition. E) color.

D

Valles Marineris is a A) large valley on the Moon. B) vast plain on Mars. C) huge series of cliffs on Mercury. D) large canyon on Mars. E) large canyon on Venus.

D

What are the conditions necessary for a terrestrial planet to have a strong magnetic field? A) a molten metallic core only B) fast rotation only C) a rocky mantle only D) both a molten metallic core and reasonably fast rotation E) both a metal core and a rocky mantle

D

What is the most important factor that determines the thickness, and therefore strength, of the lithosphere? A) pressure B) viscosity C) composition D) internal temperature E) distance of planet from Sun

D

What observational evidence supports the idea that Mercury once shrank by some 20 kilometers in radius? A) the presence of many impact craters B) the characteristics of the Caloris Basin C) Mercury's unusually high density D) the presence of many long, tall cliffs

D

Which internal energy source produces heat by converting gravitational potential energy into thermal energy? A) accretion B) differentiation C) radioactivity D) both A and B E) all of the above

D

Which internal heat source still generates heat within the terrestrial worlds today? A) heat of accretion B) heat from differentiation C) heat from convection D) heat from radioactive decay

D

Which of the following best describes the geological histories of the Moon and Mercury? A) Impact cratering is the only major geological process that has affected their surfaces. B) All four geological processes were important in their early histories, but only impact cratering still reshapes their surfaces today. C) Impact cratering shaped these worlds early in their histories. Then, during the past few million years, they were reshaped by episodes of volcanism and tectonics. D) Early in their histories, they suffered many impacts and experienced some volcanism and tectonics, but they now have little geological activity at all.

D

Which of the following best describes the lunar maria? A) densely cratered regions on the Moon B) mountainous regions on the Moon C) frozen oceans of liquid water on the Moon D) relatively smooth, flat plains on the Moon

D

Which of the following best describes why the smaller terrestrial worlds have cooler interiors than the larger ones? A) They were cooler when they formed. B) The smaller ones are farther from the Sun. C) They have relatively fewer radioactive elements. D) They have relatively more surface area compared to their volumes. E) They had more volcanic eruptions in the past, which released their internal heat.

D

Which of the following describes erosion? A) the excavation of bowl-shaped depressions by asteroids or comets striking a planet's surface B) the eruption of molten rock from a planet's interior to its surface C) the disruption of a planet's surface by internal stresses D) the wearing down or building up of geological features by wind, water, ice, and other phenomena of planetary weather

D

Which of the following does not provide evidence that Mars once had abundant liquid water on its surface? A) the presence of features that look like dried up river beds B) the presence of "blueberries" made of the mineral hematite C) the presence of very old craters that appear to have been eroded by rain D) the presence of canali, discovered in the late 1800s by Giovanni Schiaparelli and mapped by Percival Lowell

D

Which of the following is not evidence for plate tectonics on Earth? A) some continental boundaries fit together like pieces of a jigsaw puzzle B) similar rocks and fossils are found in different continents C) high ocean ridges between the continents D) existence of volcanoes E) earthquakes

D

Which of the following places is the result of volcanoes erupting over a hot spot in the mantle? A) the Himalayas B) the Appalachians C) California D) Hawaii

D

Which of the following show evidence of ancient river beds? A) the Moon B) Mercury C) Venus D) Mars E) all of the above

D

Which two factors are most important to the existence of plate tectonics on Earth? A) oxygen in the atmosphere and mantle convection B) the existence of life and oxygen in the atmosphere C) Earth's liquid outer core and solid inner core D) mantle convection and a thin lithosphere

D

Which two geological processes appear to have been most important in shaping the present surface of Venus? A) impacts and volcanoes B) impacts and tectonics C) tectonics and erosion D) volcanoes and tectonics E) volcanoes and erosion

D

You discover an impact crater that is 10 kilometers across. Which of the following can you conclude? A) It was created by the impact of an object about 10 kilometers across. B) It was created within the past 10 million years. C) It was created within the past 1 billion years. D) It was created by the impact of an object about 1 kilometer across.

D

Some of the oldest continental crust on Earth lies in A) Hawaii. B) California. C) the Great Plains. D) the deep South. E) Northeastern Canada.

E

Under what circumstances can differentiation occur in a planet? A) The planet must have a rocky surface. B) The planet must be made of both metal and rock. C) The planet must have an atmosphere. D) The planet must be geologically active, that is, have volcanoes, planetquakes, and erosion from weather. E) The planet must have a molten interior.

E

What are the circumstances under which convection can occur in a substance? A) when the substance is subjected to a strong magnetic field B) when dense material is being added to the substance C) when the substance is strongly shaken or disturbed by a strong wind D) when the substance is strongly cooled from underneath E) when the substance is strongly heated from underneath

E

What kind of surface features may result from tectonics? A) mountains B) valleys C) volcanos D) cliffs E) all of the above

E

When we see a region of a planet that is not as heavily cratered as other regions, we conclude that A) there is little volcanic activity to create craters. B) the planet is rotating very slowly and only one side was hit by impactors. C) the planet formed after the age of bombardment and missed out on getting hit by leftover planetesimals. D) the surface in the region is older than the surface in more heavily cratered regions. E) the surface in the region is younger than the surface in more heavily cratered regions

E


Ensembles d'études connexes

Business and Society BULW 1370 Chapter 15

View Set

Macroeconomics - FTC1(ch11-18) - additional textbook questions for review

View Set

American Red Cross Basic Life Support

View Set

NSG 330 Ch 55- Management Urinary Disorders

View Set

Marketing chapter 12 practice questions

View Set

Substance Related and Addictive Disorders

View Set

Suaugusių vertinimas - Gudaitė iki 80psl

View Set

ATI Pharmacology Practice Assessment (Analgesic and F&E Meds)

View Set