bio questions

Réussis tes devoirs et examens dès maintenant avec Quizwiz!

8) Which of the following nucleotide triplets best represents a codon? A) a triplet separated spatially from other triplets B) a triplet that has no corresponding amino acid C) a triplet at the opposite end of tRNA from the attachment site of the amino acid D) a triplet in the same reading frame as an upstream AUG E) a sequence in tRNA at the 3' end

D

DNA polymerase

DNA polymerase

The direction of synthesis of an RNA transcript is _____.

5' --> 3'

1) Which of the following variations on translation would be most disadvantageous for a cell? A) translating polypeptides directly from DNA B) using fewer kinds of tRNA C) having only one stop codon D) lengthening the half-life of mRNA E) having a second codon (besides AUG) as a start codon

A

19) A transcription unit that is 8,000 nucleotides long may use 1,200 nucleotides to make a protein consisting of approximately 400 amino acids. This is best explained by the fact that A) many noncoding stretches of nucleotides are present in mRNA. B) there is redundancy and ambiguity in the genetic code. C) many nucleotides are needed to code for each amino acid. D) nucleotides break off and are lost during the transcription process. E) there are termination exons near the beginning of mRNA.

A

35) Which of the following sets of materials are required by both eukaryotes and prokaryotes for replication? A) double-stranded DNA, four kinds of dNTPs, primers, origins B) topoisomerases, telomerases, polymerases C) G-C rich regions, polymerases, chromosome nicks D) nucleosome loosening, four dNTPs, four rNTPs E) ligase, primers, nucleases

A

41) Why do histones bind tightly to DNA? A) Histones are positively charged, and DNA is negatively charged. B) Histones are negatively charged, and DNA is positively charged. C) Both histones and DNA are strongly hydrophobic. D) Histones are covalently linked to the DNA. E) Histones are highly hydrophobic, and DNA is hydrophilic.

A

5) A particular triplet of bases in the template strand of DNA is 5' AGT 3'. The corresponding codon for the mRNA transcribed is A) 3' UCA 5'. B) 3' UGA 5'. C) 5' TCA 3'. D) 3' ACU 5'. E) either UCA or TCA, depending on wobble in the first base.

A

57) The spontaneous loss of amino groups from adenine in DNA results in hypoxanthine, an uncommon base, opposite thymine. What combination of proteins could repair such damage? A) nuclease, DNA polymerase, DNA ligase B) telomerase, primase, DNA polymerase C) telomerase, helicase, single-strand binding protein D) DNA ligase, replication fork proteins, adenylyl cyclase E) nuclease, telomerase, primase

A

6) The genetic code is essentially the same for all organisms. From this, one can logically assume which of the following? A) A gene from an organism can theoretically be expressed by any other organism. B) All organisms have experienced convergent evolution. C) DNA was the first genetic material. D) The same codons in different organisms translate into the different amino acids. E) Different organisms have different numbers of different types of amino acids.

A

61) A mutation results in a defective enzyme A. Which of the following would be a consequence of that mutation? A) an accumulation of A and no production of B and C B) an accumulation of A and B and no production of C C) an accumulation of B and no production of A and C D) an accumulation of B and C and no production of A E) an accumulation of C and no production of A and B

A

7) The "universal" genetic code is now known to have exceptions. Evidence for this can be found if which of the following is true? A) If UGA, usually a stop codon, is found to code for an amino acid such as tryptophan (usually coded for by UGG only). B) If one stop codon, such as UGA, is found to have a different effect on translation than another stop codon, such as UAA. C) If prokaryotic organisms are able to translate a eukaryotic mRNA and produce the same polypeptide. D) If several codons are found to translate to the same amino acid, such as serine. E) If a single mRNA molecule is found to translate to more than one polypeptide when there are two or more AUG sites.

A

80) The anticodon of a particular tRNA molecule is A) complementary to the corresponding mRNA codon. B) complementary to the corresponding triplet in rRNA. C) the part of tRNA that bonds to a specific amino acid. D) changeable, depending on the amino acid that attaches to the tRNA. E) catalytic, making the tRNA a ribozyme.

A

81) Which of the following is not true of RNA processing? A) Exons are cut out before mRNA leaves the nucleus. B) Nucleotides may be added at both ends of the RNA. C) Ribozymes may function in RNA splicing. D) RNA splicing can be catalyzed by spliceosomes. E) A primary transcript is often much longer than the final RNA molecule that leaves the nucleus.

A

DNA template strand 5' ____________________________ 3' DNA complementary strand 3' ____________________________ 5' 67) Given the locally unwound double strand above, in which direction does the RNA polymerase move? A) 3' → 5' along the template strand B) 5' → 3' along the template strand C) 3' → 5' along the complementary strand D) 5' → 3' along the complementary strand E) 5' → 3' along the double-stranded DNA

A

48) Which of the following DNA mutations is the most likely to be damaging to the protein it specifies? A) a base-pair deletion B) a codon substitution C) a substitution in the last base of a codon D) a codon deletion E) a point mutation

a

10) Replication in prokaryotes differs from replication in eukaryotes for which of the following reasons? A) Prokaryotic chromosomes have histones, whereas eukaryotic chromosomes do not. B) Prokaryotic chromosomes have a single origin of replication, whereas eukaryotic chromosomes have many. C) The rate of elongation during DNA replication is slower in prokaryotes than in eukaryotes. D) Prokaryotes produce Okazaki fragments during DNA replication, but eukaryotes do not. E) Prokaryotes have telomeres, and eukaryotes do not.

b

32) A mutant bacterial cell has a defective aminoacyl synthetase that attaches a lysine to tRNAs with the anticodon AAA instead of the normal phenylalanine. The consequence of this for the cell will be that A) none of the proteins in the cell will contain phenylalanine. B) proteins in the cell will include lysine instead of phenylalanine at amino acid positions specified by the codon UUU. C) the cell will compensate for the defect by attaching phenylalanine to tRNAs with lysine-specifying anticodons. D) the ribosome will skip a codon every time a UUU is encountered. E) none of the options will occur; the cell will recognize the error and destroy the tRNA.

b

33) There are 61 mRNA codons that specify an amino acid, but only 45 tRNAs. This is best explained by the fact that A) some tRNAs have anticodons that recognize four or more different codons. B) the rules for base pairing between the third base of a codon and tRNA are flexible. C) many codons are never used, so the tRNAs that recognize them are dispensable. D) the DNA codes for all 61 tRNAs but some are then destroyed. E) competitive exclusion forces some tRNAs to be destroyed by nucleases.

b

14) In eukaryotes there are several different types of RNA polymerase. Which type is involved in transcription of mRNA for a globin protein? A) ligase B) RNA polymerase I C) RNA polymerase II D) RNA polymerase III E) primase

c

15) Which enzyme catalyzes the elongation of a DNA strand in the 5' → 3' direction? A) primase B) DNA ligase C) DNA polymerase III D) topoisomerase E) helicase

c

16) A part of the promoter, called the TATA box, is said to be highly conserved in evolution. Which of the following might this illustrate? A) The sequence evolves very rapidly. B) The sequence does not mutate. C) Any mutation in the sequence is selected against. D) The sequence is found in many but not all promoters. E) The sequence is transcribed at the start of every gene.

c

19) At a specific area of a chromosome, the sequence of nucleotides below is present where the chain opens to form a replication fork: 3' C C T A G G C T G C A A T C C 5' An RNA primer is formed starting at the underlined T (T) of the template. Which of the following represents the primer sequence? A) 5' G C C T A G G 3' B) 3' G C C T A G G 5' C) 5' A C G T T A G G 3' D) 5' A C G U U A G G 3' E) 5' G C C U A G G 3'

d

28) Which of the following help(s) to hold the DNA strands apart while they are being replicated? A) primase B) ligase C) DNA polymerase D) single-strand binding proteins E) exonuclease

d

3) After mixing a heat-killed, phosphorescent strain of bacteria with a living nonphosphorescent strain, you discover that some of the living cells are now phosphorescent. Which observations would provide the best evidence that the ability to fluoresce is a heritable trait? A) DNA passed from the heat-killed strain to the living strain. B) Protein passed from the heat-killed strain to the living strain. C) The phosphorescence in the living strain is especially bright. D) Descendants of the living cells are also phosphorescent. E) Both DNA and protein passed from the heat-killed strain to the living strain.

d

43) Why might a point mutation in DNA make a difference in the level of protein's activity? A) It might result in a chromosomal translocation. B) It might exchange one stop codon for another stop codon. C) It might exchange one serine codon for a different serine codon. D) It might substitute an amino acid in the active site. E) It might substitute the N-terminus of the polypeptide for the C-terminus.

d

72) The figure represents tRNA that recognizes and binds a particular amino acid (in this instance, phenylalanine). Which codon on the mRNA strand codes for this amino acid? A) UGG B) GUG C) GUA D) UUC E) CAU

d

A transfer RNA (#1) attached to the amino acid lysine enters the ribosome. The lysine binds to the growing polypeptide on the other tRNA (#2) in the ribosome already. 77) Which component of the complex described enters the exit tunnel through the large subunit of the ribosome? A) tRNA with attached lysine (#1) B) tRNA with polypeptide (#2) C) tRNA that no longer has attached amino acid D) newly formed polypeptide E) initiation and elongation factors

d

2) How do we describe transformation in bacteria? A) the creation of a strand of DNA from an RNA molecule B) the creation of a strand of RNA from a DNA molecule C) the infection of cells by a phage DNA molecule D) the type of semiconservative replication shown by DNA E) assimilation of external DNA into a cell

e

2) The tryptophan operon is a repressible operon that is A) permanently turned on. B) turned on only when tryptophan is present in the growth medium. C) turned off only when glucose is present in the growth medium. D) turned on only when glucose is present in the growth medium. E) turned off whenever tryptophan is added to the growth medium.

e

57) In comparing DNA replication with RNA transcription in the same cell, which of the following is true only of replication? A) It uses RNA polymerase. B) It makes a new molecule from its 5' end to its 3' end. C) The process is extremely fast once it is initiated. D) The process occurs in the nucleus of a eukaryotic cell. E) The entire template molecule is represented in the product.

e

83) Which of the following mutations would be most likely to have a harmful effect on an organism? A) a nucleotide-pair substitution B) a deletion of three nucleotides near the middle of a gene C) a single nucleotide deletion in the middle of an intron D) a single nucleotide deletion near the end of the coding sequence E) a single nucleotide insertion downstream of, and close to, the start of the coding sequence

e

Use the following model of a eukaryotic transcript to answer the next few questions. 5' UTR E₁ I₁ E₂ I₂ E₃ I₃ E₄ UTR 3' 25) When the spliceosome binds to elements of this structure, where can it attach? A) to the exons B) to the 5' UTR C) to the 3' UTR D) to an adjacent intron and exon E) to the end of an intron

e

The promoter

the region of DNA at which the process of transcription begins.

42) Which of the following represents the order of increasingly higher levels of organization of chromatin? A) nucleosome, 30-nm chromatin fiber, looped domain B) looped domain, 30-nm chromatin fiber, nucleosome C) looped domain, nucleosome, 30-nm chromatin fiber D) nucleosome, looped domain, 30-nm chromatin fiber E) 30-nm chromatin fiber, nucleosome, looped domain

A

49) You briefly expose bacteria undergoing DNA replication to radioactively labeled nucleotides. When you centrifuge the DNA isolated from the bacteria, the DNA separates into two classes. One class of labeled DNA includes very large molecules (thousands or even millions of nucleotides long), and the other includes short stretches of DNA (several hundred to a few thousand nucleotides in length). These two classes of DNA probably represent A) leading strands and Okazaki fragments. B) lagging strands and Okazaki fragments. C) Okazaki fragments and RNA primers. D) leading strands and RNA primers. E) RNA primers and mitochondrial DNA.

A

DNA polymerase III

An enzyme that enzyme catalyzes the elongation of a DNA strand in the 5' → 3' direction

21) Alternative RNA splicing A) is a mechanism for increasing the rate of transcription. B) can allow the production of proteins of different sizes from a single mRNA. C) can allow the production of similar proteins from different RNAs. D) increases the rate of transcription. E) is due to the presence or absence of particular snRNPs.

B

10) Which of the following statements best describes the termination of transcription in prokaryotes? A) RNA polymerase transcribes through the polyadenylation signal, causing proteins to associate with the transcript and cut it free from the polymerase. B) RNA polymerase transcribes through the terminator sequence, causing the polymerase to separate from the DNA and release the transcript. C) RNA polymerase transcribes through an intron, and the snRNPs cause the polymerase to let go of the transcript. D) Once transcription has initiated, RNA polymerase transcribes until it reaches the end of the chromosome. E) RNA polymerase transcribes through a stop codon, causing the polymerase to stop advancing through the gene and release the mRNA.

B

12) RNA polymerase in a prokaryote is composed of several subunits. Most of these subunits are the same for the transcription of any gene, but one, known as sigma, varies considerably. Which of the following is the most probable advantage for the organism of such sigma switching? A) It might allow the transcription process to vary from one cell to another. B) It might allow the polymerase to recognize different promoters under certain environmental conditions. C) It could allow the polymerase to react differently to each stop codon. D) It could allow ribosomal subunits to assemble at faster rates. E) It could alter the rate of translation and of exon splicing.

B

39) If a cell were unable to produce histone proteins, which of the following would be a likely effect? A) There would be an increase in the amount of "satellite" DNA produced during centrifugation. B) The cell's DNA couldn't be packed into its nucleus. C) Spindle fibers would not form during prophase. D) Amplification of other genes would compensate for the lack of histones. E) Pseudogenes would be transcribed to compensate for the decreased protein in the cell.

B

40) Which of the following statements is true of histones? A) Each nucleosome consists of two molecules of histone H1. B) Histone H1 is not present in the nucleosome bead; instead, it draws the nucleosomes together. C) The carboxyl end of each histone extends outward from the nucleosome and is called a "histone tail." D) Histones are found in mammals, but not in other animals or in plants or fungi. E) The mass of histone in chromatin is approximately nine times the mass of DNA.

B

53) Which of the following statements is true about protein synthesis in prokaryotes? A) Extensive RNA processing is required before prokaryotic transcripts can be translated. B) Translation can begin while transcription is still in progress. C) Prokaryotic cells have complicated mechanisms for targeting proteins to the appropriate cellular organelles. D) Translation requires antibiotic activity. E) Unlike eukaryotes, prokaryotes require no initiation or elongation factors.

B

56) A biochemist isolates, purifies, and combines in a test tube a variety of molecules needed for DNA replication. When she adds some DNA to the mixture, replication occurs, but each DNA molecule consists of a normal strand paired with numerous segments of DNA a few hundred nucleotides long. What has she probably left out of the mixture? A) DNA polymerase B) DNA ligase C) nucleotides D) Okazaki fragments E) primase

B

78) In eukaryotic cells, transcription cannot begin until A) the two DNA strands have completely separated and exposed the promoter. B) several transcription factors have bound to the promoter. C) the 5' caps are removed from the mRNA. D) the DNA introns are removed from the template. E) DNA nucleases have isolated the transcription unit.

B

82) Which component is not directly involved in translation? A) mRNA B) DNA C) tRNA D) ribosomes E) GTP

B

DNA template strand 5' ____________________________ 3' DNA complementary strand 3' ____________________________ 5' 68) In the transcription event of the previous DNA, where would the promoter be located? A) at the 3' end of the newly made RNA B) to the right of the template strand C) to the left of the template strand D) to the right of the sense strand E) to the left of the sense strand

B

Use the following model of a eukaryotic transcript to answer the next few questions. 5' UTR E₁ I₁ E₂ I₂ E₃ I₃ E₄ UTR 3' 28) Suppose that an induced mutation removes most of the 5' end of the 5' UTR. What might result? A) Removal of the 5' UTR has no effect because the exons are still maintained. B) Removal of the 5' UTR also removes the 5' cap and the mRNA will quickly degrade. C) The 3' UTR will duplicate and one copy will replace the 5' end. D) The first exon will not be read because I₁ will now serve as the UTR. E) Removal of the 5' UTR will result in the strand not binding to tRNAs.

B

11) Which of the following does not occur in prokaryotic eukaryotic gene expression, but does in eukaryotic gene expression? A) mRNA, tRNA, and rRNA are transcribed. B) RNA polymerase binds to the promoter. C) A poly-A tail is added to the 3' end of an mRNA and a cap is added to the 5' end. D) Transcription can begin as soon as translation has begun even a little. E) RNA polymerase requires a primer to elongate the molecule.

C

20) During splicing, which molecular component of the spliceosome catalyzes the excision reaction? A) protein B) DNA C) RNA D) lipid E) sugar

C

4) The nitrogenous base adenine is found in all members of which group? A) proteins, triglycerides, and testosterone B) proteins, ATP, and DNA C) ATP, RNA, and DNA D) α glucose, ATP, and DNA E) proteins, carbohydrates, and ATP

C

43) Which of the following statements describes chromatin? A) Heterochromatin is composed of DNA, whereas euchromatin is made of DNA and RNA. B) Both heterochromatin and euchromatin are found in the cytoplasm. C) Heterochromatin is highly condensed, whereas euchromatin is less compact. D) Euchromatin is not transcribed, whereas heterochromatin is transcribed. E) Only euchromatin is visible under the light microscope.

C

54) In a nucleosome, the DNA is wrapped around A) polymerase molecules. B) ribosomes. C) histones. D) a thymine dimer. E) satellite DNA.

C

58) In order for a eukaryotic gene to be engineered into a bacterial colony to be expressed, what must be included in addition to the coding exons of the gene? A) the introns B) eukaryotic polymerases C) a bacterial promoter sequence D) eukaryotic ribosomal subunits E) eukaryotic tRNAs

C

62) If A, B, and C are all required for growth, a strain that is mutant for the gene-encoding enzyme A would be able to grow on which of the following media? A) minimal medium B) minimal medium supplemented with nutrient A only C) minimal medium supplemented with nutrient B only D) minimal medium supplemented with nutrient C only E) minimal medium supplemented with nutrients A and C

C

71) What type of bonding is responsible for maintaining the shape of the tRNA molecule? A) covalent bonding between sulfur atoms B) ionic bonding between phosphates C) hydrogen bonding between base pairs D) van der Waals interactions between hydrogen atoms E) peptide bonding between amino acids

C

23) In an experimental situation, a student researcher inserts an mRNA molecule into a eukaryotic cell after he has removed its 5' cap and poly-A tail. Which of the following would you expect him to find? A) The mRNA could not exit the nucleus to be translated. B) The cell recognizes the absence of the tail and polyadenylates the mRNA. C) The molecule is digested by restriction enzymes in the nucleus. D) The molecule is digested by exonucleases since it is no longer protected at the 5' end. E) The molecule attaches to a ribosome and is translated, but more slowly.

D

3) Which of the following is a protein produced by a regulatory gene? A) operon B) inducer C) promoter D) repressor E) corepressor

D

38) Which of the following statements describes the eukaryotic chromosome? A) It is composed of DNA alone. B) The nucleosome is its most basic functional subunit. C) The number of genes on each chromosome is different in different cell types of an organism. D) It consists of a single linear molecule of double-stranded DNA plus proteins. E) Active transcription occurs on heterochromatin but not euchromatin.

D

44) In the 1920s Muller discovered that X-rays caused mutation in Drosophila. In a related series of experiments in the 1940s, Charlotte Auerbach discovered that chemicals-she used nitrogen mustards-have a similar effect. A new chemical food additive is developed by a cereal manufacturer. Why do we test for its ability to induce mutation? A) We worry that it might cause mutation in cereal grain plants. B) We want to make sure that it does not emit radiation. C) We want to be sure that it increases the rate of mutation sufficiently. D) We want to prevent any increase in mutation frequency. E) We worry about its ability to cause infection.

D

51) Which of the following mutations is most likely to cause a phenotypic change? A) a duplication of all or most introns B) a large inversion whose ends are each in intergenic regions C) a nucleotide substitution in an exon coding for a transmembrane domain D) a single nucleotide deletion in an exon coding for an active site E) a frameshift mutation one codon away from the 3' end of the nontemplate strand

D

52) In analyzing the number of different bases in a DNA sample, which result would be consistent with the base-pairing rules? A) A = G B) A + G = C + T C) A + T = G + T D) A = C E) G = T

D

53) The elongation of the leading strand during DNA synthesis A) progresses away from the replication fork. B) occurs in the 3' → 5' direction. C) produces Okazaki fragments. D) depends on the action of DNA polymerase. E) does not require a template strand.

D

55) E. coli cells grown on ¹⁵N medium are transferred to ¹⁴N medium and allowed to grow for two more generations (two rounds of DNA replication). DNA extracted from these cells is centrifuged. What density distribution of DNA would you expect in this experiment? A) one high-density and one low-density band B) one intermediate-density band C) one high-density and one intermediate-density band D) one low-density and one intermediate-density band E) one low-density band

D

63) If A, B, and C are all required for growth, a strain mutant for the gene-encoding enzyme B would be capable of growing on which of the following media? A) minimal medium B) minimal medium supplemented with A only C) minimal medium supplemented with B only D) minimal medium supplemented with C only E) minimal medium supplemented with nutrients A and B

D

9) Which of the following provides some evidence that RNA probably evolved before DNA? A) RNA polymerase uses DNA as a template. B) RNA polymerase makes a single-stranded molecule. C) RNA polymerase does not require localized unwinding of the DNA. D) DNA polymerase uses primer, usually made of RNA. E) DNA polymerase has proofreading function. Answer: D

D

48) For a science fair project, two students decided to repeat the Hershey and Chase experiment, with modifications. They decided to label the nitrogen of the DNA, rather than the phosphate. They reasoned that each nucleotide has only one phosphate and two to five nitrogens. Thus, labeling the nitrogens would provide a stronger signal than labeling the phosphates. Why won't this experiment work? A) There is no radioactive isotope of nitrogen. B) Radioactive nitrogen has a half-life of 100,000 years, and the material would be too dangerous for too long. C) Avery et al. have already concluded that this experiment showed inconclusive results. D) Although there are more nitrogens in a nucleotide, labeled phosphates actually have 16 extra neutrons; therefore, they are more radioactive. E) Amino acids (and thus proteins) also have nitrogen atoms; thus, the radioactivity would not distinguish between DNA and proteins.

E

Use the following list of choices for the following question I. helicase II. DNA polymerase III III. ligase IV. DNA polymerase I V. primase 34) Which of the enzymes synthesizes short segments of RNA? A) I B) II C) III D) IV E) V

E

Nuclease

Nucleases are enzymes that cut DNA for repair.

Topoisomerase

Relieves strain in the DNA ahead of the replication fork

17) The TATA sequence is found only several nucleotides away from the start site of transcription. This most probably relates to which of the following? A) the number of hydrogen bonds between A and T in DNA B) the triplet nature of the codon C) the ability of this sequence to bind to the start site D) the supercoiling of the DNA near the start site E) the 3-D shape of a DNA molecule

a

2) Garrod hypothesized that "inborn errors of metabolism" such as alkaptonuria occur because A) metabolic enzymes require vitamin cofactors, and affected individuals have significant nutritional deficiencies. B) enzymes are made of DNA, and affected individuals lack DNA polymerase. C) many metabolic enzymes use DNA as a cofactor, and affected individuals have mutations that prevent their enzymes from interacting efficiently with DNA. D) certain metabolic reactions are carried out by ribozymes, and affected individuals lack key splicing factors. E) genes dictate the production of specific enzymes, and affected individuals have genetic defects that cause them to lack certain enzymes.

a

24) The leading and the lagging strands differ in that A) the leading strand is synthesized in the same direction as the movement of the replication fork, and the lagging strand is synthesized in the opposite direction. B) the leading strand is synthesized by adding nucleotides to the 3' end of the growing strand, and the lagging strand is synthesized by adding nucleotides to the 5' end. C) the lagging strand is synthesized continuously, whereas the leading strand is synthesized in short fragments that are ultimately stitched together. D) the leading strand is synthesized at twice the rate of the lagging strand.

a

26) What is the function of topoisomerase? A) relieving strain in the DNA ahead of the replication fork B) elongating new DNA at a replication fork by adding nucleotides to the existing chain C) adding methyl groups to bases of DNA D) unwinding of the double helix E) stabilizing single-stranded DNA at the replication fork

a

3) The difference between ATP and the nucleoside triphosphates used during DNA synthesis is that A) the nucleoside triphosphates have the sugar deoxyribose; ATP has the sugar ribose. B) the nucleoside triphosphates have two phosphate groups; ATP has three phosphate groups. C) ATP contains three high-energy bonds; the nucleoside triphosphates have two. D) ATP is found only in human cells; the nucleoside triphosphates are found in all animal and plant cells. E) triphosphate monomers are active in the nucleoside triphosphates, but not in ATP.

a

31) What is the function of GTP in translation? A) GTP energizes the formation of the initiation complex, using initiation factors. B) GTP hydrolyzes to provide phosphate groups for tRNA binding. C) GTP hydrolyzes to provide energy for making peptide bonds. D) GTP supplies phosphates and energy to make ATP from ADP. E) GTP separates the small and large subunits of the ribosome at the stop codon.

a

39) When the ribosome reaches a stop codon on the mRNA, no corresponding tRNA enters the A site. If the translation reaction were to be experimentally stopped at this point, which of the following would you be able to isolate? A) an assembled ribosome with a polypeptide attached to the tRNA in the P site B) separated ribosomal subunits, a polypeptide, and free tRNA C) an assembled ribosome with a separated polypeptide D) separated ribosomal subunits with a polypeptide attached to the tRNA E) a cell with fewer ribosomes

a

55) Gene expression in the domain Archaea in part resembles that of bacteria and in part that of the domain Eukarya. In which way is it most like the domain Eukarya? A) Domain Archaea have numerous transcription factors. B) Initiation of translation is like that of domain Eukarya. C) There is only one RNA polymerase. D) Transcription termination often involves attenuation. E) Post-transcriptional splicing is like that of Eukarya.

a

6) Cytosine makes up 42% of the nucleotides in a sample of DNA from an organism. Approximately what percentage of the nucleotides in this sample will be thymine? A) 8% B) 16% C) 31% D) 42% E) It cannot be determined from the information provided.

a

7) Which of the following can be determined directly from X-ray diffraction photographs of crystallized DNA? A) the diameter of the helix B) the rate of replication C) the sequence of nucleotides D) the bond angles of the subunits E) the frequency of A vs. T nucleotides

a

8) It became apparent to Watson and Crick after completion of their model that the DNA molecule could carry a vast amount of hereditary information in which of the following? A) sequence of bases B) phosphate-sugar backbones C) complementary pairing of bases D) side groups of nitrogenous bases E) different five-carbon sugars

a

Use the following list of choices for the following question I. helicase II. DNA polymerase III III. ligase IV. DNA polymerase I V. primase 32) Which of the enzymes separates the DNA strands during replication? A) I B) II C) III D) IV E) V

a

1) In his transformation experiments, what did Griffith observe? A) Mutant mice were resistant to bacterial infections. B) Mixing a heat-killed pathogenic strain of bacteria with a living nonpathogenic strain can convert some of the living cells into the pathogenic form. C) Mixing a heat-killed nonpathogenic strain of bacteria with a living pathogenic strain makes the pathogenic strain nonpathogenic. D) Infecting mice with nonpathogenic strains of bacteria makes them resistant to pathogenic strains. E) Mice infected with a pathogenic strain of bacteria can spread the infection to other mice.

b

11) What is meant by the description "antiparallel" regarding the strands that make up DNA? A) The twisting nature of DNA creates nonparallel strands. B) The 5' to 3' direction of one strand runs counter to the 5' to 3' direction of the other strand. C) Base pairings create unequal spacing between the two DNA strands. D) One strand is positively charged and the other is negatively charged. E) One strand contains only purines and the other contains only pyrimidines.

b

14) In E. coli, there is a mutation in a gene called dnaB that alters the helicase that normally acts at the origin. Which of the following would you expect as a result of this mutation? A) No proofreading will occur. B) No replication fork will be formed. C) The DNA will supercoil. D) Replication will occur via RNA polymerase alone. E) Replication will require a DNA template from another source.

b

18) What is a ribozyme? A) an enzyme that uses RNA as a substrate B) an RNA with enzymatic activity C) an enzyme that catalyzes the association between the large and small ribosomal subunits D) an enzyme that synthesizes RNA as part of the transcription process E) an enzyme that synthesizes RNA primers during DNA replication

b

20) Polytene chromosomes of Drosophila salivary glands each consist of multiple identical DNA strands that are aligned in parallel arrays. How could these arise? A) replication followed by mitosis B) replication without separation C) meiosis followed by mitosis D) fertilization by multiple sperm E) special association with histone proteins

b

3) Garrod's information about the enzyme alteration resulting in alkaptonuria led to further elucidation of the same pathway in humans. Phenylketonuria (PKU) occurs when another enzyme in the pathway is altered or missing, resulting in a failure of phenylalanine (phe) to be metabolized to another amino acid: tyrosine. Tyrosine is an earlier substrate in the pathway altered in alkaptonuria. How might PKU affect the presence or absence of alkaptonuria? A) It would have no effect, because PKU occurs several steps away in the pathway. B) It would have no effect, because tyrosine is also available from the diet. C) Anyone with PKU must also have alkaptonuria. D) Anyone with PKU is born with a predisposition to later alkaptonuria. E) Anyone with PKU has mild symptoms of alkaptonuria.

b

36) Studies of nucleosomes have shown that histones (except H1) exist in each nucleosome as two kinds of tetramers: one of 2 H2A molecules and 2 H2B molecules, and the other as 2 H3 and 2 H4 molecules. Which of the following is supported by this data? A) DNA can wind itself around either of the two kinds of tetramers. B) The two types of tetramers associate to form an octamer. C) DNA has to associate with individual histones before they form tetramers. D) Only H2A can form associations with DNA molecules. E) The structure of H3 and H4 molecules is not basic like that of the other histones.

b

36) When translating secretory or membrane proteins, ribosomes are directed to the ER membrane by A) a specific characteristic of the ribosome itself, which distinguishes free ribosomes from bound ribosomes. B) a signal-recognition particle that brings ribosomes to a receptor protein in the ER membrane. C) moving through a specialized channel of the nucleus. D) a chemical signal given off by the ER. E) a signal sequence of RNA that precedes the start codon of the message.

b

38) The process of translation, whether in prokaryotes or eukaryotes, requires tRNAs, amino acids, ribosomal subunits, and which of the following? A) polypeptide factors plus ATP B) polypeptide factors plus GTP C) polymerases plus GTP D) SRP plus chaperones E) signal peptides plus release factor

b

4) In trying to determine whether DNA or protein is the genetic material, Hershey and Chase made use of which of the following facts? A) DNA contains sulfur, whereas protein does not. B) DNA contains phosphorus, whereas protein does not. C) DNA contains nitrogen, whereas protein does not. D) DNA contains purines, whereas protein includes pyrimidines. E) RNA includes ribose, whereas DNA includes deoxyribose sugars.

b

40) What is the function of the release factor (RF)? A) It separates tRNA in the A site from the growing polypeptide. B) It binds to the stop codon in the A site in place of a tRNA. C) It releases the amino acid from its tRNA to allow the amino acid to form a peptide bond. D) It supplies a source of energy for termination of translation. E) It releases the ribosome from the ER to allow polypeptides into the cytosol.

b

41) When the function of the newly made polypeptide is to be secreted from the cell where it has been made, what must occur? A) It must be translated by a ribosome that remains free of attachment to the ER. B) Its signal sequence must target it to the ER, from which it goes to the Golgi. C) It has a signal sequence that must be cleaved off before it can enter the ER. D) It has a signal sequence that targets it to the cell's plasma membrane where it causes exocytosis. E) Its signal sequence causes it to be encased in a vesicle as soon as it is translated.

b

45) Which of the following types of mutation, resulting in an error in the mRNA just after the AUG start of translation, is likely to have the most serious effect on the polypeptide product? A) a deletion of a codon B) a deletion of two nucleotides C) a substitution of the third nucleotide in an ACC codon D) a substitution of the first nucleotide of a GGG codon E) an insertion of a codon

b

49) Which small-scale mutation would be most likely to have a catastrophic effect on the functioning of a protein? A) a base substitution B) a base deletion near the start of a gene C) a base deletion near the end of the coding sequence, but not in the terminator codon D) deletion of three bases near the start of the coding sequence, but not in the initiator codon E) a base insertion near the end of the coding sequence, but not in the terminator codon

b

13) An Okazaki fragment has which of the following arrangements? A) primase, polymerase, ligase B) 3' RNA nucleotides, DNA nucleotides 5' C) 5' RNA nucleotides, DNA nucleotides 3' D) DNA polymerase I, DNA polymerase III E) 5' DNA to 3'

c

16) Eukaryotic telomeres replicate differently than the rest of the chromosome. This is a consequence of which of the following? A) the evolution of telomerase enzyme B) DNA polymerase that cannot replicate the leading strand template to its 5' end C) gaps left at the 5' end of the lagging strand D) gaps left at the 3' end of the lagging strand because of the need for a primer E) the "no ends" of a circular chromosome

c

22) In the structural organization of many eukaryotic genes, individual exons may be related to which of the following? A) the sequence of the intron that immediately precedes each exon B) the number of polypeptides making up the functional protein C) the various domains of the polypeptide product D) the number of restriction enzyme cutting sites E) the number of start sites for transcription

c

22) What is the function of DNA polymerase III? A) to unwind the DNA helix during replication B) to seal together the broken ends of DNA strands C) to add nucleotides to the 3' end of a growing DNA strand D) to degrade damaged DNA molecules E) to rejoin the two DNA strands (one new and one old) after replication

c

27) What is the role of DNA ligase in the elongation of the lagging strand during DNA replication? A) It synthesizes RNA nucleotides to make a primer. B) It catalyzes the lengthening of telomeres. C) It joins Okazaki fragments together. D) It unwinds the parental double helix. E) It stabilizes the unwound parental DNA.

c

29) A particular triplet of bases in the coding sequence of DNA is AAA. The anticodon on the tRNA that binds the mRNA codon is A) TTT. B) UUA. C) UUU. D) AAA. E) either UAA or TAA, depending on first base wobble.

c

37) An experimenter has altered the 3' end of the tRNA corresponding to the amino acid methionine in such a way as to remove the 3' AC. Which of the following hypotheses describes the most likely result? A) tRNA will not form a cloverleaf. B) The nearby stem end will pair improperly. C) The amino acid methionine will not bind. D) The anticodon will not bind with the mRNA codon. E) The aminoacylsynthetase will not be formed

c

42) Suppose that a mutation alters the formation of a tRNA such that it still attaches to the same amino acid (phe) but its anticodon loop has the sequence AAU that binds to the mRNA codon UUA (that usually specifies leucine leu). A) The modified tRNA will cause this mRNA to make only nonfunctioning product. B) The tRNA-leu will not be able to enter the site of the ribosome to bind to the UUA. C) One mutated tRNA molecule will be relatively inconsequential because it will compete with many "normal" ones. D) The tRNA will be so unstable that it will not participate in translation. E) The mutated tRNA will result in an amino acid variant in all copies of the protein.

c

46) What is the effect of a nonsense mutation in a gene? A) It changes an amino acid in the encoded protein. B) It has no effect on the amino acid sequence of the encoded protein. C) It introduces a premature stop codon into the mRNA. D) It alters the reading frame of the mRNA. E) It prevents introns from being excised.

c

50) In his work with pneumonia-causing bacteria and mice, Griffith found that A) the protein coat from pathogenic cells was able to transform nonpathogenic cells. B) heat-killed pathogenic cells caused pneumonia. C) some substance from pathogenic cells was transferred to nonpathogenic cells, making them pathogenic. D) the polysaccharide coat of bacteria caused pneumonia. E) bacteriophages injected DNA into bacteria.

c

51) What is the basis for the difference in how the leading and lagging strands of DNA molecules are synthesized? A) The origins of replication occur only at the 5' end. B) Helicases and single-strand binding proteins work at the 5' end. C) DNA polymerase can join new nucleotides only to the 3' end of a growing strand. D) DNA ligase works only in the 3' → 5' direction. E) Polymerase can work on only one strand at a time.

c

52) If a protein is coded for by a single gene and this protein has six clearly defined domains, which number of exons below is the gene likely to have? A) 1 B) 5 C) 8 D) 12 E) 14

c

54) Of the following, which is the most current description of a gene? A) a unit of heredity that causes formation of a phenotypic characteristic B) a DNA subunit that codes for a single complete protein C) a DNA sequence that is expressed to form a functional product: either RNA or polypeptide D) a DNA—RNA sequence combination that results in an enzymatic product E) a discrete unit of hereditary information that consists of a sequence of amino acids

c

56) Which of the following is true of transcription in domain Archaea? A) It is regulated in the same way as in domain Bacteria. B) There is only one kind of RNA polymerase. C) It is roughly simultaneous with translation. D) Promoters are identical to those in domain Eukarya. E) It terminates in a manner similar to bacteria.

c

9) In an analysis of the nucleotide composition of DNA, which of the following will be found? A) A = C B) A = G and C = T C) A + C = G + T D) G + C = T + A

c

A transfer RNA (#1) attached to the amino acid lysine enters the ribosome. The lysine binds to the growing polypeptide on the other tRNA (#2) in the ribosome already. 76) Where does tRNA #2 move to after this bonding of lysine to the polypeptide? A) A site B) P site C) E site D) exit tunnel E) directly to the cytosol

c

The enzyme polynucleotide phosphorylase randomly assembles nucleotides into a polynucleotide polymer. 74) You add polynucleotide phosphorylase to a solution of adenosine triphosphate and guanosine triphosphate. How many artificial mRNA 3 nucleotide codons would be possible? A) 3 B) 4 C) 8 D) 16 E) 64

c

Use the following list of choices for the following question I. helicase II. DNA polymerase III III. ligase IV. DNA polymerase I V. primase 33) Which of the enzymes covalently connects segments of DNA? A) I B) II C) III D) IV E) V

c

Use the following model of a eukaryotic transcript to answer the next few questions. 5' UTR E₁ I₁ E₂ I₂ E₃ I₃ E₄ UTR 3' 24) Which components of the previous molecule will also be found in mRNA in the cytosol? A) 5' UTR I₁ I₂ I₃ UTR 3' B) 5' E₁ E₂ E₃ E₄ 3' C) 5' UTR E₁ E₂ E₃ E₄ UTR 3' D) 5' I₁ I₂ I₃ 3' E) 5' E₁ I₁ E₂ I₂ E₃ I₃ E₄ 3'

c

Primase

catalyzes the formation of an RNA primer.

15) Transcription in eukaryotes requires which of the following in addition to RNA polymerase? A) the protein product of the promoter B) start and stop codons C) ribosomes and tRNA D) several transcription factors (TFs) E) aminoacyl synthetase

d

17) The enzyme telomerase solves the problem of replication at the ends of linear chromosomes by which method? A) adding a single 5' cap structure that resists degradation by nucleases B) causing specific double-strand DNA breaks that result in blunt ends on both strands C) causing linear ends of the newly replicated DNA to circularize D) adding numerous short DNA sequences such as TTAGGG, which form a hairpin turn E) adding numerous GC pairs which resist hydrolysis and maintain chromosome integrity

d

30) Which of the following would you expect of a eukaryote lacking telomerase? A) a high probability of somatic cells becoming cancerous B) production of Okazaki fragments C) inability to repair thymine dimers D) a reduction in chromosome length in gametes E) high sensitivity to sunlight

d

35) Which of the following is a function of a signal peptide? A) to direct an mRNA molecule into the cisternal space of the ER B) to bind RNA polymerase to DNA and initiate transcription C) to terminate translation of the messenger RNA D) to translocate polypeptides across the ER membrane E) to signal the initiation of transcription

d

37) In a linear eukaryotic chromatin sample, which of the following strands is looped into domains by scaffolding? A) DNA without attached histones B) DNA with H1 only C) the 10-nm chromatin fiber D) the 30-nm chromatin fiber E) the metaphase chromosome

d

5) Which of the following investigators was/were responsible for the following discovery? In DNA from any species, the amount of adenine equals the amount of thymine, and the amount of guanine equals the amount of cytosine. A) Frederick Griffith B) Alfred Hershey and Martha Chase C) Oswald Avery, Maclyn McCarty, and Colin MacLeod D) Erwin Chargaff E) Matthew Meselson and Franklin Stahl

d

50) The most commonly occurring mutation in people with cystic fibrosis is a deletion of a single codon. This results in A) a base-pair substitution. B) a nucleotide mismatch. C) a frameshift mutation. D) a polypeptide missing an amino acid. E) a nonsense mutation.

d

59) When the genome of a particular species is said to include 20,000 protein-coding regions, what does this imply? A) There are 20,000 genes. B) Each gene codes for one protein. C) Any other regions are "junk" DNA. D) There are also genes for RNAs other than mRNA. E) The species is highly evolved.

d

79) Which of the following is not true of a codon? A) It consists of three nucleotides. B) It may code for the same amino acid as another codon. C) It never codes for more than one amino acid. D) It extends from one end of a tRNA molecule. E) It is the basic unit of the genetic code.

d

9) Individuals with the disorder xeroderma pigmentosum are hypersensitive to sunlight. This occurs because their cells are impaired in what way? A) They cannot replicate DNA. B) They cannot undergo mitosis. C) They cannot exchange DNA with other cells. D) They cannot repair thymine dimers. E) They do not recombine homologous chromosomes during meiosis.

d

The enzyme polynucleotide phosphorylase randomly assembles nucleotides into a polynucleotide polymer. 75) You add polynucleotide phosphorylase to a solution of ATP, GTP, and UTP. How many artificial mRNA 3 nucleotide codons would be possible? A) 3 B) 6 C) 9 D) 27 E) 81

d

Use the following list of choices for the following question I. helicase II. DNA polymerase III III. ligase IV. DNA polymerase I V. primase 31) Which of the enzymes removes the RNA nucleotides from the primer and adds equivalent DNA nucleotides to the 3' end of Okazaki fragments? A) I B) II C) III D) IV E) V

d

Use the following model of a eukaryotic transcript to answer the next few questions. 5' UTR E₁ I₁ E₂ I₂ E₃ I₃ E₄ UTR 3' 26) Which of the following is a useful feature of introns for this model? A) They are translated into small polypeptides. B) They become parts of snRNPs. C) Each intron has enzymatic properties. D) Introns allow exon shuffling. E) Introns protect exon structure.

d

Use the following model of a eukaryotic transcript to answer the next few questions. 5' UTR E₁ I₁ E₂ I₂ E₃ I₃ E₄ UTR 3' 27) Suppose that exposure to a chemical mutagen results in a change in the sequence that alters the 5' end of intron 1 (I₁). What might occur? A) loss of the gene product B) loss of E₁ C) premature stop to the mRNA D) inclusion of I₁ in the mRNA E) exclusion of E₂

d

1) The role of a metabolite that controls a repressible operon is to A) bind to the promoter region and decrease the affinity of RNA polymerase for the promoter. B) bind to the operator region and block the attachment of RNA polymerase to the promoter. C) increase the production of inactive repressor proteins. D) bind to the repressor protein and inactivate it. E) bind to the repressor protein and activate it.

e

12) Suppose you are provided with an actively dividing culture of E. coli bacteria to which radioactive thymine has been added. What would happen if a cell replicates once in the presence of this radioactive base? A) One of the daughter cells, but not the other, would have radioactive DNA. B) Neither of the two daughter cells would be radioactive. C) All four bases of the DNA would be radioactive. D) Radioactive thymine would pair with nonradioactive guanine. E) DNA in both daughter cells would be radioactive.

e

18) The DNA of telomeres has been found to be highly conserved throughout the evolution of eukaryotes. What does this most probably reflect? A) the inactivity of this DNA B) the low frequency of mutations occurring in this DNA C) that new evolution of telomeres continues D) that mutations in telomeres are relatively advantageous E) that the critical function of telomeres must be maintained

e

21) To repair a thymine dimer by nucleotide excision repair, in which order do the necessary enzymes act? A) exonuclease, DNA polymerase III, RNA primase B) helicase, DNA polymerase I, DNA ligase C) DNA ligase, nuclease, helicase D) DNA polymerase I, DNA polymerase III, DNA ligase E) endonuclease, DNA polymerase I, DNA ligase

e

25) A new DNA strand elongates only in the 5' to 3' direction because A) DNA polymerase begins adding nucleotides at the 5' end of the template. B) Okazaki fragments prevent elongation in the 3' to 5' direction. C) the polarity of the DNA molecule prevents addition of nucleotides at the 3' end. D) replication must progress toward the replication fork. E) DNA polymerase can only add nucleotides to the free 3' end.

e

30) Accuracy in the translation of mRNA into the primary structure of a polypeptide depends on specificity in the A) binding of ribosomes to mRNA. B) shape of the A and P sites of ribosomes. C) bonding of the anticodon to the codon. D) attachment of amino acids to tRNAs. E) bonding of the anticodon to the codon and the attachment of amino acids to tRNAs.

e

34) Which of the following is the first event to take place in translation in eukaryotes? A) elongation of the polypeptide B) base pairing of activated methionine-tRNA to AUG of the messenger RNA C) binding of the larger ribosomal subunit to smaller ribosomal subunits D) covalent bonding between the first two amino acids E) the small subunit of the ribosome recognizes and attaches to the 5' cap of mRNA

e

47) A frameshift mutation could result from A) a base insertion only. B) a base deletion only. C) a base substitution only. D) deletion of three consecutive bases. E) either an insertion or a deletion of a base.

e

DNA Ligase

joins Ozaki fragments (DNA segments) into a continuous strand.

Helicase

unwinds/relaxes DNA double helix.


Ensembles d'études connexes

Geometry Chapter 3-4 Study Guide

View Set

Describing AlphaSights and Associate Role

View Set

MGT300 Test 2 True/False Questions

View Set

Science 6 chapter 8, Static and Current Electricity only

View Set

3A: Never have I had such a rewarding experience

View Set

Chapter 9 ( Gravity) Test Review

View Set