Cell Bio Test 2

Réussis tes devoirs et examens dès maintenant avec Quizwiz!

Fully folded proteins typically have polar side chains on their surfaces, where electrostatic attractions and hydrogen bonds can form between the polar group on the amino acid and the polar molecules in the solvent. In contrast, some proteins have a polar side chain in their hydrophobic interior. Which of the following would not occur to help accommodate an internal, polar side chain? (a) A hydrogen bond forms between two polar side chains. (b) A hydrogen bond forms between a polar side chain and the protein backbone. (c) A hydrogen bond forms between a polar side chain and an aromatic side chain. (d) Hydrogen bonds form between polar side chains and a buried water molecule.

(c) A hydrogen bond forms between a polar side chain and an aromatic side chain.

Cells use membranes to help maintain set ranges of ion concentrations inside and outside the cell. Which of the following negatively charged ions is not primarily used to buffer positive charges inside the cell? (a) PO43- (b) OH- (c) Cl- (d) HCO- 3

(c) Cl-

In step 4 of the citric acid cycle, the reduction of NAD+ to NADH is coupled to the generation of CO2 and the formation of a high-energy thioester bond. Which molecule provides the sulfhydryl group necessary to form the thioester bond? (a) pyruvate (b) acetyl CoA (c) CoA (d) cysteine side chain in the catalytic pocket

(c) CoA

Which of the following statements is true? (a) Disulfide bonds are formed by the cross-linking of methionine residues. (b) Disulfide bonds are formed mainly in proteins that are retained within the cytosol. (c) Disulfide bonds stabilize but do not change a protein's final conformation. (d) Agents such as mercaptoethanol can break disulfide bonds through oxidation.

(c) Disulfide bonds stabilize but do not change a protein's final conformation.

Which of the following is not true of molecular chaperones? (a) They assist polypeptide folding by helping the folding process follow the most energetically favorable pathway. (b) They can isolate proteins from other components of the cells until folding is complete. (c) They can interact with unfolded polypeptides in a way that changes the final fold of the protein. (d) They help streamline the protein-folding process by making it a more efficient and reliable process inside the cell.

(c) They can interact with unfolded polypeptides in a way that changes the final fold of the protein.

Both glycoproteins and proteoglycans contribute to the carbohydrate layer on the surface of the cell. Which of the following is not true of glycoproteins? (a) They can be secreted into the extracellular environment. (b) They have only one transmembrane domain. (c) They have long carbohydrate chains. (d) They are recognized by lectins.

(c) They have long carbohydrate chains.

Alternative exons can arise through the duplication and divergence of existing exons. What type of mutation below would be least tolerated during the evolution of a new exon? (a) a nucleotide change of A to G (b) a deletion of three consecutive bases (c) mutation of the first nucleotide in the intron (d) a nucleotide change that alters a TT dinucleotide to AA

(c) mutation of the first nucleotide in the intron; The first two nucleotides in the intron are critical for signaling the exon-intron boundary; changing them would make the exon unable to be properly spliced.

Which of the following methods used to study proteins is limited to proteins with a molecular mass of 50 kD or less? (a) X-ray crystallography (b) fingerprinting (c) nuclear magnetic resonance (d) mass spectroscopy

(c) nuclear magnetic resonance

The reaction cycle that uses acetyl CoA to generate electron carrier molecules needed in the electron-transport chain is important for powering the cell. Which of the names below is not one of those commonly used to describe this reaction cycle? (a) tricarboxylic acid cycle (b) Krebs cycle (c) oxaloacetic acid cycle (d) citric acid cycle

(c) oxaloacetic acid cycle

Which of the following describes a feature found in bacterial expression vectors but not in cloning vectors? (a) origin of replication (b) cleavage sites for restriction nucleases (c) promoter DNA sequences (d) a polyadenylation signal

(c) promoter DNA sequences

The lateral movement of transmembrane proteins can be restricted by several different mechanisms. Which mechanism best describes the process by which an antigen-presenting cell triggers an adaptive immune response? (a) proteins are tethered to the cell cortex (b) proteins are tethered to the extracellular matrix (c) proteins are tethered to the proteins on the surface of another cell (d) protein movement is limited by the presence of a diffusion barrier

(c) proteins are tethered to the proteins on the surface of another cell

The lateral movement of transmembrane proteins can be restricted by several different mechanisms. Which mechanism best describes the process by which neutrophils are recruited by endothelial cells? (a) proteins are tethered to the cell cortex (b) proteins are tethered to the extracellular matrix (c) proteins are tethered to the proteins on the surface of another cell (d) protein movement is limited by the presence of a diffusion barrier

(c) proteins are tethered to the proteins on the surface of another cell

Water molecules readily form hydrogen bonds with other polar molecules, and when they encounter nonpolar molecules they must form hydrogen-bonding networks with neighboring water molecules. Which of the following molecules will cause a "cage" of water to form? (a) 2-methylpropane (b) acetone (c) methanol (d) urea

(a) 2-methylpropane

Which of the following statements is false? (a) A mutation that arises in a mother's somatic cell often causes a disease in her daughter. (b) All mutations in an asexually reproducing single-celled organism are passed on to progeny. (c) In to germ-line an evolutionary sense, somatic cells exist only help propagate cells. (d) A mutation is passed on to offspring only if it is present in the germ line.

(a) A mutation that arises in a mother's somatic cell often causes a disease in her daughter.

Which of the following generalities about genomes is true? (a) All vertebrate genomes contain roughly the same number of genes. (b) All unicellular organisms contain roughly the same number of genes. (c) The larger an organism, the more genes it has. (d) The more types of cell an organism has, the more genes it has.

(a) All vertebrate genomes contain roughly the same number of genes.

The citric acid cycle is a critical sequence of reactions energy production, place in the matrix of the mitochondria. The reaction cycle requires materials from the cytosol to be converted into acetyl CoA, which represents the starting point of a new cycle. Which of the following statements about acetyl CoA is true? (a) Amino acids can be converted into acetyl CoA. (b) Pyruvate is converted into acetyl CoA in the cytosol. (c) Triacylglycerol molecules are transported into the mitochondrial matrix and cleaved by lipases to produce acetyl CoA. (d) Oxaloacetate is converted directly into acetyl CoA to feed the citric acid cycle.

(a) Amino acids can be converted into acetyl CoA.

During DNA renaturation, two DNA strands will ________. (a) break the covalent bonds that hold the nucleotides together while maintaining the hydrogen bonds that hold the two strands together. (b) break the hydrogen bonds that hold the two strands together with no effect on the covalent bonds that hold the nucleotides together. (c) re-form a double helix if the two strands have complementary sequences. (d) re-form a double helix if the two strands are identical in sequence.

(c) re-form a double helix if the two strands have complementary sequences.

A DNA library has been constructed by purifying chromosomal DNA from mice, cutting the DNA with the restriction enzyme NotI, and inserting the fragments into the NotI site of a plasmid vector. What information cannot be retrieved from this library? (a) gene regulatory sequences (b) intron sequences (c) sequences of the telomeres (the ends of the chromosomes) (d) amino acid sequences of proteins

(c) sequences of the telomeres (the ends of the chromosomes)

Some cells have aquaporins—channels that facilitate the flow of water molecules through the plasma membrane. For these cells, what regulates the rate and direction of water diffusion across the membrane? (a) aquaporin conformation (b) resting membrane potential (c) solute concentrationson either side of the membrane (d) availability of ATP

(c) solute concentrationson either side of the membrane

Antibody production is an indispensible part of our immune response, but it is not the only defense our bodies have. Which of the following is observed during an infection that is not a result of antibody-antigen interactions? (a) B cell proliferation (b) aggregation of viral particles (c) systemic temperature increase (d) antibody secretion

(c) systemic temperature increase

PCR was invented in _______. (a) the 1800s. (b) the 1950s. (c) the 1980s. (d) 2009.

(c) the 1980s.

The Na++ ATPase is also known as the Na++ pump. It is responsible for -K-K maintaining the high extracellular sodium ion concentration and the high intracellular potassium ion concentration. What happens immediately after the pump hydrolyzes ATP? (a) Na+is bound (b) ADP is bound (c) the pump is phosphorylated (d) the pump changes conformation

(c) the pump is phosphorylated

We can estimate the relative mobility of a population of molecules along the surface of a living cell by fluorescently labeling the molecules of interest, bleaching the label in one small area, and then measuring the speed of signal recovery as molecules migrate back into the bleached area. What is this method called? What does the abbreviation stand for? (a) SDS (b) SPT (c) GFP (d) FRAP

(d) FRAP

The pufferfish, Fugu rubripes, has a genome that is one-tenth the size of mammalian genomes. Which of the following statements is not a possible reason for this size difference? (a) Intron sequences in Fugu are shorter than those in mammals. (b) Fugu lacks the repetitive DNA found in mammals. (c) The Fugu genome seems to have lost sequences faster than it has gained sequences over evolutionary time. (d) Fugu has lost many genes that are part of gene families.

(d) Fugu has lost many genes that are part of gene families.

Several different classes of enzymes are needed for the catabolism of carbohydrates. Which of the following descriptions best matches the function of an isomerase? (a) An enzyme that catalyzes the rearrangement of bonds within a single molecule. (b) An enzyme that catalyzes a change in the position of a specific chemical group within a single molecule. (c) An enzyme that catalyzes the oxidation of a molecule by removing a hydride ion. (d) An enzyme that catalyzes the addition of phosphate groups to other molecules.

(a) An enzyme that catalyzes the rearrangement of bonds within a single molecule.

Which of the following channels would not be expected to generate a change in voltage by movement of its substrate across the membrane where it is found? (a) an aquaporin (b) a sodium channel (c) a calcium channel (d) a proton channel

(a) Aquaporin where they channels are found in the plasma membrane of some cells, facilitate diffusion of water across the membrane. Because water is an uncharged molecule, its movement would not be expected to alter the voltage across the membrane.

Which of the following statements about gene families is false? (a) Because gene duplication can occur when crossover events occur, genes are always duplicated onto homologous chromosomes. (b) Not all duplicated genes will become functional members of gene families. (c) Whole-genome duplication can contribute to the formation of gene families. (d) Duplicated genes can diverge in both their regulatory regions and their coding regions.

(a) Because gene duplication can occur when crossover events occur, genes are always duplicated onto homologous chromosomes.

Which of the following is true of a retrovirus but not of the Alu retrotransposon? (a) It requires cellular enzymes to make copies. (b) It can be inserted into the genome. (c) It can be excised and moved to a new location in the genome. (d) It encodes its own reverse transcriptase.

(d) It encodes its own reverse transcriptase.

Pyruvate can be converted into many other molecules by various biosynthetic and metabolic pathways, which makes it a central hub in the regulation of cellular metabolism. Which of the following molecules is notmade from pyruvate? (a) oxaloacetate (b) ethanol (c) lactate (d) NADH

(d) NADH Pyruvate cannot be converted into NADH, but can be converted into metabolites in one or two steps.

Which of the following statements about homologous genes is true? (a) For protein-coding genes, homologous genes will show more similarity in their amino acid sequences than in their nucleotide sequences. (b) Fewer than 1% of human genes have homologs in the nematode and the fruit fly. (c) Most homologous genes arose by gene duplication. (d) A gene in humans that has homologs in plants and prokaryotes will show the same level of similarity in nucleotide sequence when the human and prokaryotic sequences are compared as when the human chimpanzee sequence is compared.

(a) Because of the degeneracy of the genetic code, nucleotide sequences can diverge but still code for identical amino acids.

What purpose does the phosphorylation of glucose to glucose 6-phosphate by the enzyme hexokinase serve as the first step in glycolysis? (a) It helps drive the uptake of glucose from outside the cell. (b) It generates a high-energy phosphate bond. (c) It converts ATP to a more useful form. (d) It by the enables the glucose 6-phosphate to be recognized phosphofructokinase, next enzyme in the glycolytic pathway.

(a) It helps drive the uptake of glucose from outside the cell.

The conversion of glyceraldehyde 3-phosphate to 1,3 bisphosphoglycerate in step 6 of glycolysis generates a "high energy" phosphoanhydride bond. Which of the following best describes what happens to that bond in step 7? (a) It is hydrolyzed to drive the formation of ATP. (b) It is hydrolyzed to drive the formation of NADH. (c) It is hydrolyzed to generate pyruvate. (d) It is oxidized to CO2.

(a) It is hydrolyzed to drive the formation of ATP.

Mobile genetic elements are sometimes called "jumping genes," because they move from place to place throughout the genome. The exact mechanism by which they achieve this mobility depends on the genes contained within the mobile element. Which of the following mobile genetic elements carries both a transposase gene and a reverse transcriptase gene? (a) L1 (b) B1 (c) Alu (d) Tn3

(a) L1

Which of the following statements about the human genome is false? (a) About 50% of the human genome is made up of mobile genetic elements. (b) More of the human genome comprises intron sequences than exon sequences. (c) About 1.5% of the human genome codes for exons. (d) Only the exons are conserved between the genomes humans and mammals.

(d) Only the exons are conserved between the humans and mammals genomes. About 5% of the human genome is highly conserved with other mammalian genomes, yet only about 1.5% of the human genome codes for exons.

Which of the following functions do you not expect to find in the set of genes found in all organisms on Earth? (a) DNA replication (b) DNA repair (c) protein production (d) RNA splicing

(d) RNA splicing . Not all organisms have introns and therefore not all organisms will have genes involved in RNA splicing.

In a method called patch-clamping, a glass capillary can be converted into a microelectrode that measures the electrical currents across biological membranes. Which of the following is not true about the patch-clamp method? (a) The glass capillary adheres to a "patch" of membrane through the application of suction. (b) The aperture in the glass capillary used to make a microelectrode is about 1 µm in diameter. (c) If the experimental conditions are held constant, fluctuations in electrical currents across the patch of membrane are still observed. (d) Single-channel patch-clamp recordings have demonstrated that gated membrane channels will only open and close in response to specific stimuli.

(d) Single-channel patch-clamp recordings have demonstrated that gated membrane channels will only open and close in response to specific stimuli.

Which of the following statements about the globin gene family is true? (a) The globin protein, which can carry oxygen molecules throughout an organism's body, was first seen in ancient vertebrate species about 500 million years ago. (b) The gene duplication that led to the expansion of the globin gene family led to the separation and distribution of globin on many chromosomes in mammals, such that no chromosome has more than a single functional member of the globin gene family. (c) As globin gene family members diverged over the course of evolution, all the DNA sequence variations that have accumulated between family members are within the regulatory DNA sequences that affect when and how strongly each globin gene is expressed. (d) Some of the duplicated globin genes that arose during vertebrate evolution acquired inactivating mutations and became pseudogenes in modern

(d) Some of the duplicated globin genes that arose during vertebrate evolution acquired inactivating mutations and became pseudogenes in modern

Which of the following statements is false? (a) The human genome is more similar to the orangutan genome than it is to the mouse genome. (b) A comparison of genomes shows that 90% of the human genome shares regions of conserved synteny with the mouse genome. (c) Primates, dogs, mice, and chickens all have about the same number of genes. (d) Genes that code for all eukaryotes ribosomal RNA share significant similarity in but are much more difficult to recognize in archaea.

(d) The gene that codes for the ribosomal RNA of the small ribosomal subunit is conserved in all living species.

Which of the following statements does not accurately describe the events involved in the propagation of an action potential? (a) An initial influx of Na+ through a small cluster of channels causes local depolarization of the membrane. (b) Local depolarization causes nearby Na+ channels to open. (c) Channels in depolarized regions of the membrane are inactivated until the resting membrane potential is reestablished. (d) The opening of transmitter-gated K+ channels helps to repolarize the membrane.

(d) The opening of transmitter-gated K+ channels helps to repolarize the membrane.

In step 2 of the citric acid cycle, the enzyme aconitase generates isocitrate from citrate. Which of the following statements about this reaction is true? (a) There is a substantial free-energy difference between the reactants and products of this reaction. (b) The unbonded electrons from hydroxide ions provide energy for this reaction. (c) The aconitase enzyme functions as a mutase in this reaction. (d) The reaction sequence first generates one molecule of water and then consumes one molecule of water.

(d) The reaction sequence first generates one molecule of water and then consumes one molecule of water.

The correct folding of proteins is necessary to maintain healthy cells and tissues. Unfolded proteins are responsible for such neurodegenerative disorders as Alzheimer's disease, Huntington's disease, and Creutzfeldt-Jakob disease (the specific faulty protein is different for each disease). What is the ultimate fate of these disease-causing, unfolded proteins? (a) They are degraded. (b) They bind a different target protein. (c) They form structured filaments. (d) They form protein aggregates.

(d) They form protein aggregates.

K+ leak channels are found in the plasma membrane. These channels open and close in an unregulated, random fashion. What do they accomplish in a resting cell? (a) They set the K+ concentration gradient to zero. (b) They set the membrane potential to zero. (c) They disrupt the resting membrane potential. (d) They keep the electrochemical gradient for K+ at zero.

(d) They keep the electrochemical gradient for K+ at zero.

Which of the following statements about GABA receptors is not true? (a) They are located on postsynaptic membranes. (b) They are ligand-gated channels. (c) They inhibit synaptic signaling. (d) They promote neuronal uptake of Na+

(d) They promote neuronal uptake of Na+

Which of the following statements about what we have learned by comparing the modern-day human genome to other genomes is true? (a) Modern humans whose ancestors come from Europe or Asia share up to 4 percent of their genome with Neanderthals. (b) Accelerated changes, which were found when comparing the human genome to other mammalian genomes, were not found when comparing the modern-day human genome to the Neanderthal genome. (c) The human genome is far more gene-dense than the yeast genome. (d) In syntenic regions of the human and mouse genomes, both gene order and the placements of more than 95% of the mobile genetic elements are conserved.

(a) Modern humans whose ancestors come from Europe or Asia share up to 4 percent of their genome with Neanderthals.

Molecular chaperones can work by creating an "isolation chamber." What is the purpose of this chamber? (a) The chamber acts as a garbage disposal, degrading improperly folded proteins so that they do not interact with properly folded proteins. (b) This chamber is used to increase the local protein concentration, which will help speed up the folding process. (c) This chamber serves to transport unfolded proteins out of the cell. (d) This chamber serves to protect unfolded proteins from interacting with other proteins in the cytosol, until protein folding is completed.

(d) This chamber serves to protect unfolded proteins from interacting with other proteins in the cytosol, until protein folding is completed.

Diversity among the oligosaccharide chains found in the carbohydrate coating of the cell surface can be achieved in which of the following ways? (a) varying the types of sugar monomers used (b) varying the types of linkages between sugars (c) varying the number of branches in the chain (d) all of the above

(d) all of the above: (a) varying the types of sugar monomers used (b) varying the types of linkages between sugars (c) varying the number of branches in the chain

Both excitatory and inhibitory neurons form junctions with muscles. By what mechanism do inhibitory neurotransmitters prevent the postsynaptic cell from firing an action potential? (a) by closing Na+ channels (b) by preventing the secretion of excitatory neurotransmitters (c) by opening K+ channels (d) by opening Cl- channels

(d) by opening Cl- channels

Which of the following membrane lipids does not contain a fatty acid tail? (a) phosphatidylcholine (b) a glycolipid (c) phosphatidylserine (d) cholesterol

(d) cholesterol

Below is a list of molecules with different chemical characteristics. Knowing that all molecules will eventually diffuse across a phospholipid bilayer, select the option below that most accurately predicts the relative rates of diffusion of these molecules (fastest to slowest). alanine estrogen propanol sodium (a) alanine > propanol > sodium > estrogen (b) sodium > propanol > alanine > estrogen (c) estrogen > propanol > sodium > alanine (d) estrogen > propanol > alanine > sodium

(d) estrogen > propanol > alanine > sodium

On a diet consisting of nothing but protein, which of the following is the most likely outcome? (a) loss of weight because amino acids cannot be used for the synthesis of fat (b) muscle gain because the amino acids will go directly into building muscle (c) tiredness because amino acids cannot be used to generate energy (d) excretion of more nitrogenous (ammonia-derived) wastes than with a more balanced diet

(d) excretion of more nitrogenous (ammonia-derived) wastes than with a more balanced diet

Some lipases are able to cleave the covalent bonds between the glycerol backbone and the attached fatty acid. What final products do you expect to accumulate through the action of the enzyme monoacylglycerol lipase? (a) phosphoglycerol and free fatty acid (b) sterol and glycerol (c) free phosphate and glycerol (d) glycerol and free fatty acid

(d) glycerol and free fatty acid

Which of the following processes do not take place in the mitochondria? (a) citric acid cycle (b) conversion of pyruvate to activated acetyl groups (c) oxidation of fatty acids to acetyl CoA (d) glycogen breakdown

(d) glycogen breakdown

Cells use membranes to help maintain set ranges of ion concentrations inside and outside the cell. Which of the following ions is the most abundant outside a typical mammalian cell? (a) Na+ (b) K+2+ (c) Ca (d) Cl-

(a) Na+

Which of the following statements about pseudogenes is false? (a) Pseudogenes code for microRNAs. (b) Pseudogenes share significant nucleotide similarity with functional genes. (c) Pseudogenes are no longer expressed in the cell. (d) There are estimated to be approximately 20,000 pseudogenes in the human genome.

(a) Pseudogenes code for microRNAs.

Voltage-gated channels contain charged protein domains, which are sensitive to changes in membrane potential. By responding to a threshold in the membrane potential, these voltage sensors trigger the opening of the channels. Which of the following best describes the behavior of a population of channels exposed to such a threshold? (a) Some channels remain closed and some open completely. (b) All channels open completely. (c) All channels open partly, to the same degree. (d) All channels open partly, each to a different degree

(a) Some channels remain closed and some open completely.

You discover that the underlying cause of a disease is a protein that is now less stable than the non-disease-causing version of the protein. This change is most likely to be due to ________. (a) a mutation within a gene. (b) a mutation within the regulatory DNA of a gene. (c) gene duplication. (d) horizontal gene transfer.

(a) a mutation within a gene.

Polypeptides are synthesized from amino acid building blocks. The condensation reaction between the growing polypeptide chain and the next amino acid to be added involves the loss of ________________. (a) a water molecule. (b) an amino group. (c) a carbon atom. (d) a carboxylic acid group

(a) a water molecule.

The stimulation of a motor neuron ultimately results in the release of a neurotransmitter at the synapse between the neuron and a muscle cell. What type of neurotransmitter is used at these neuromuscular junctions? (a) acetylcholine (b) glutamate (c) GABA (d) glycine

(a) acetylcholine

Pumps are transporters that are able to harness energy provided by other components in the cells to drive the movement of solutes across membranes, against their concentration gradient. This type of transport is called _____________. (a) active transport. (b) free diffusion. (c) facilitated diffusion. (d) passive transport.

(a) active transport.

When glucose is being used up and not replaced from food intake, blood can be maintained by synthesizing glucose from smaller molecules such as pyruvate or lactate. This process is called gluconeogenesis. Which organ is principally responsible for supplying glucose to the rest of the body when glucose reserves are low? (a) liver (b) pancreas (c) spleen (d) gall bladder

(a) liver

The oxygen-dependent reactions required for cellular respiration were originally thought to occur in a linear pathway. By using a competitive inhibitor for one enzyme in the pathway, investigators discovered that these reactions occur in a cycle. What compound served as the inhibitor? (a) malonate (b) malate (c) fumarate (d) succinate

(a) malonate

Glycolysis is an anaerobic process used to catabolize glucose. What does it mean for this process to be anaerobic? (a) no oxygen is required (b) no oxidation occurs (c) it takes place in the lysosome (d) glucose is broken down by the addition of electrons

(a) no oxygen is required

Which of the following statements about allostery is true? (a) of in the same Allosteric regulators are often products other chemical reactions biochemical pathway. (b) Allosteric regulation is always used for negative regulation of enzyme activity. (c) Enzymes are the only types of proteins that are subject to allosteric regulation. (d) Binding of allosteric molecules usually locks an enzyme in its current conformation, such that the enzyme cannot adopt a different conformation.

(a) of in the same Allosteric regulators are often products other chemical reactions biochemical pathway.

The endothelial cells found closest to the site of an infection express proteins called lectins. Each lectin binds to a particular ____________ that is presented on the surface of a target cell. (a) oligosaccharide (b) aminophospholipid (c) polysaccharide (d) sphingolipid

(a) oligosaccharide

Which type of lipids are the most abundant in the plasma membrane? (a) phospholipids (b) glycolipids (c) sterols (d) triacylglycerides

(a) phospholipids

The lateral movement of transmembrane proteins can be restricted by several different mechanisms. Which mechanism best describes the process by which a budding yeast cell designates the site of new bud formation during cell division? (a) proteins are tethered to the cell cortex (b) proteins are tethered to the extracellular matrix (c) proteins are tethered to the proteins on the surface of another cell (d) protein movement is limited by the presence of a diffusion barrier

(a) proteins are tethered to the cell cortex

Instead of studying one or two proteins or protein complexes present in the cell at any given time, we can now look at a snapshot of all proteins being expressed in cells being grown in specific conditions. This large-scale, systematic approach to the study of proteins is called _______________. (a) proteomics. (b) structural biology. (c) systems biology. (d) genomics.

(a) proteomics.

For some proteins, small molecules are integral to their structure and function. Enzymes can synthesize some of these small molecules, whereas others, called vitamins, must be ingested in the food we eat. Which of the following molecules is not classified as a vitamin but does require the ingestion of a vitamin for its production? (a) retinal (b) biotin (c) zinc (d) heme

(a) retinal

Foods are broken down into simple molecular subunits for distribution and use throughout the body. Which type of simple subunits, listed below, is used preferentially as an energy source? (a) simple sugars (b) proteins (c) free fatty acids (d) glycerol

(a) simple sugars

Transporters, in contrast to channels, work by ________________. (a) specific binding to solutes. (b) a gating mechanism. (c) filtering solutes by charge. (d) filtering solutes by size.

(a) specific binding to solutes.

When a molecule that chelates calcium is added to the cell culture medium, you observe a redistribution of that protein around the entire cell. Which is most likely to be true about the role of calcium in maintaining an apical distribution of protein A? (a) the complex calcium is required to maintain the structural integrity of junctional (b) calcium is required for the binding of the junctional proteins to the cell cortex (c) calcium is a structural component of protein A (d) calcium inhibits intracellular transport of protein A

(a) the complex calcium is required to maintain the structural integrity of junctional

You have two purified samples of protein Y: the wild-type (nonmutated) protein and a mutant version with a single amino acid substitution. When washed through the same gel-filtration column, mutant protein Y runs through the column more slowly than the normal protein. Which of the following changes in the mutant protein is most likely to explain this result? (a) the loss of a binding site on the mutant-protein surface through which protein Y normally forms dimers (b) a change that results in the mutant protein acquiring an overall positive instead of a negative charge (c) a change that results in the mutant protein being larger than the wild-type protein (d) a change that results in the mutant protein having a slightly different shape from the wild-type protein

(a) the loss of a binding site on the mutant-protein surface through which protein Y normally forms dimers

Which of the following phenomena will be observed if a cell's membrane is pierced? (a) the membrane reseals (b) the membrane collapses (c) a tear is formed (d) the membrane expands

(a) the membrane reseals

Which of the following regions of the genome is the least likely to be conserved over evolutionary time? (a) the upstream regulatory region of a gene that encodes the region conferring tissue specificity (b) the upstream regulatory region of a gene that binds to RNA polymerase (c) the portion of the genome that codes for proteins (d) the portion of the genome that codes for RNAs that are not translated into protein

(a) the upstream regulatory region of a gene that encodes the region conferring tissue specificity

In step 4 of the citric acid cycle, the reduction of NAD+ to NADH is coupled to the generation of CO2 and the formation of a high-energy thioester bond. The energy of the thioester bond is harnessed in step 5. What is the energy used for? (a) to generate a molecule of GTP (b) to generate a molecule of ATP (c) to generate a proton gradient (d) to generate a molecule of NADH

(a) to generate a molecule of GTP

Proteins can assemble to form large complexes that work coordinately, like moving parts inside a single machine. Which of the following steps in modulating the activity of a complex protein machine is least likely to be directly affected by ATP or GTP hydrolysis? (a) translation of protein components (b) conformational change of protein components (c) complex assembly (d) complex disassembly

(a) translation of protein components

During gel electrophoresis, DNA fragments _______________________. (a) travel through a matrix containing a microscopic network of pores. (b) migrate toward a negatively charged electrode. (c) can be visualized without stains or labels. (d) are separated on the basis of their sequence.

(a) travel through a matrix containing a microscopic network of pores.

Which of the following phospholipid precursors is the most hydrophobic? (a) triacylglycerol (b) diacylglycerol (c) phosphate (d) glycerol

(a) triacylglycerol

Which of the following globular proteins is used to form filaments as an intermediate step to assembly into hollow tubes? (a) tubulin (b) actin (c) keratin (d) collagen

(a) tubulin

Most animal fats form a solid at room temperature, while plant fats remain liquid at room temperature. Which of the following is a feature of lipids in plant membranes that best explains this difference? (a) unsaturated hydrocarbons (b) longer hydrocarbon tails (c) higher levels of sterols (d) larger head groups

(a) unsaturated hydrocarbons

The citric acid cycle is a series of oxidation reactions that removes carbon atoms from substrates in the form of CO2. Where do the oxygen atoms in the carbon dioxide molecules come from? (a) water (b) phosphates (c) molecular oxygen (d) acetyl CoA

(a) water

There are two properties of phospholipids that affect how tightly they pack together: the length of the hydrocarbon chain and the number of double bonds. The degree of packing, in turn, influences the relative mobility of these molecules in the membrane. Which of the following would yield the most highly mobile phospholipid (listed as number of carbons and number of double bonds, respectively)? (a) 24 carbons with 1 double bond (b) 15 carbons with 2 double bonds (c) 20 carbons with 2 double bonds (d) 16 carbons with no double bonds

(b) 15 carbons with 2 double bonds

Starting with one double-stranded DNA molecule, how many cycles of PCR would you have to perform to produce about 100 double-stranded copies (assuming 100% efficiency per cycle)? (a) 2 (b) 7 (c) 25 (d) 100

(b) 7

The nucleotide sequences between individuals differ by 0.1%, yet the human genome is made up of about 3 × 109false nucleotide pairs. Which of the following statements is ? (a) In most human cells, the homologous autosomes differ from each other by 0.1%. (b) All changes between human individuals are single nucleotide polymorphisms. (c) Any two individuals (other than identical twins) will generally have more than 3 million genetic differences in their genomes. (d) Much of the variation between human individuals was present 100,000 years ago, when the human population was small.

(b) All changes between human individuals are single nucleotide polymorphisms.

The nucleotide sequences between individuals differ by 0.1%, yet the human genome is made up of about 3 × 10^ 9 nucleotide pairs. Which of the following statements is false? (a) In most human cells, the homologous autosomes differ from each other by 0.1%. (b) All changes between human individuals are single nucleotide polymorphisms. (c) Any two individuals (other than identical twins) will generally have more than 3 million genetic differences in their genomes. (d) Much of the variation between human individuals was present 100,000 years ago, when the human population was small.

(b) All changes between human individuals are single nucleotide polymorphisms.

The number of distinct protein species found in humans and other organisms can vastly exceed the number of genes. This is largely due to ______________. (a) protein degradation. (b) alternative splicing. (c) homologous genes. (d) mutation.

(b) Alternative splicing can produce several different mRNA transcripts gene, and these transcripts can be translated into several different but related proteins.

Several different classes of enzymes are needed for the catabolism of carbohydrates. Which of the following descriptions best matches the function of a mutase? (a) An enzyme that catalyzes the rearrangement of bonds within a single molecule. (b) An enzyme that catalyzes a change in the position of a specific chemical group within a single molecule. (c) An enzyme that catalyzes the oxidation of a molecule by removing a hydride ion. (d) An enzyme that catalyzes the addition of phosphate groups to other molecules.

(b) An enzyme that catalyzes a change in the position of a specific chemical group within a single molecule.

Which of the following statements about DNA libraries is true? (a) Production of a DNA library involves the direct insertion of short DNA fragments into bacteria through transformation. (b) By placing the library DNA into bacteria, the bacteria can be used to amplify the desired DNA fragments from the DNA library. (c) Individual bacteria that have taken up most of the library DNA are selected for during the construction of a DNA library. (d) The library DNA within the bacteria will only be replicated when it hybridizes to a DNA probe.

(b) By placing the library DNA into bacteria, the bacteria can be used to amplify the desired DNA fragments from the DNA library.

Although the extracellular environment has a high sodium ion concentration and the intracellular environment has a high potassium ion concentration, both must be neutralized by negatively charged molecules. In the extracellular case, what is the principal anion? (a) HCO- 3 (b) Cl-3- (c) PO4 (d) OH-

(b) Cl-3-

We know the detailed molecular structure and mechanism of action of the transmembrane protein of to pump bacteriorhodopsin. This protein uses sunlight as the source energy ______ out of the cell. (a) ATP + (b) H (c) K+ (d) Na+

(b) H

Ion channels are classified as membrane transport proteins. Channels discriminate by size and charge. In addition to Na+, which one of the following ions would you expect to be able to freely diffuse through a Na channel? (a) Mg2+ (b) H + (c) K + (d) Cl-

(b) H + If an ion channel is open, it will allow any ion that is under a certain size and that has the correct charge to pass through. H+ is the only ion listed that is both smaller and has the same charge of +1.

In humans and in chimpanzees, 99% of the Aluretrotransposons are in corresponding positions. Which of the following statements below is the most likely explanation for this similarity? (a) The Alu retrotransposon is not capable of transposition in humans. (b) Most of the Alu sequences in the chimpanzee genome underwent duplication and divergence before humans and chimpanzees diverged. (c) The Alu retrotransposons are in the most beneficial position in the genome for primates. (d) The Alu retrotransposons must also be in the same position in flies.

(b) Most of the Alu sequences in the chimpanzee genome underwent duplication and divergence before humans and chimpanzees diverged.

In the final step of the citric acid cycle, oxaloacetate is regenerated through the oxidation of malate and this is coupled with the production of which other molecule? (a) FADH (b) NADH (c) GTP (d) CO2

(b) NADH

Which of the following statements about PCR is false? (a) PCR uses a DNA polymerase from a thermophilic bacterium. (b) PCR is particularly powerful because after each cycle of replication, there is a linear increase in the amount of DNA available. (c) For PCR, every round of replication is preceded by the denaturation of the double-stranded DNA molecules. (d) The PCR will generate a pool of double-stranded DNA molecules, most of which will have DNA from primers at the 5′ ends.

(b) PCR is particularly powerful because after each cycle of replication, there is a linear increase in the amount of DNA available.

A bacterium is suddenly expelled from a warm human intestine into the cold world outside. Which of the following adjustments might the bacterium make to maintain the same level of membrane fluidity? (a) Produce lipids with hydrocarbon tails that are longer and have fewer double bonds. (b) Produce lipids with hydrocarbon tails that are shorter and have more double bonds. (c) Decrease the amount of cholesterol in the membrane. (d) Decrease the amount of glycolipids in the membrane.

(b) Produce lipids with hydrocarbon tails that are shorter and have more double bonds.

Which of the following statements about restriction nucleases is false? (a) A reproducible set of DNA fragments will be produced every time a restriction nuclease digests a known piece of DNA. (b) Restriction nucleases recognize specific sequences on single-stranded DNA. (c) Some bacteria use restriction nucleases as protection from foreign DNA. (d) Some restriction nucleases cut in a staggered fashion, leaving short, single- stranded regions of DNA at the ends of the cut molecule.

(b) Restriction nucleases recognize specific sequences on single-stranded DNA.

Which of the following statements about retroviruses is false? (a) Retroviruses are packaged with a few molecules of reverse transcriptase in each virus particle. (b) Retroviruses use the host-genome integrase enzyme to create the provirus. (c) The production of viral RNAs can occur long after the initial infection of the host cell by the retrovirus. (d) Viral RNAs are translated by host-cell ribosomes to produce the proteins required for the production of viral particles.

(b) Retroviruses use the host-genome integrase enzyme to create the provirus.

It is possible to follow the movement of a single molecule or a small group of molecules. This requires the use of antibodies linked to small particles of gold, which appear as dark spots when tracked through video microscopy. What is this method called? What does the abbreviation stand for? (a) SDS (b) SPT (c) GFP (d) FRAP

(b) SPT

To study how proteins fold, scientists must be able to purify the protein of interest, use solvents to denature the folded protein, and observe the process of refolding at successive time the points. What is the effect of the solvents used in denaturation process? (a) The solvents break all covalent interactions. (b) The solvents break all noncovalent interactions. (c) The solvents break some of the noncovalent interactions, resulting in a misfolded protein. (d) The solvents create a new protein conformation.

(b) The solvents break all noncovalent interactions.

Formation of a lipid bilayer is energetically favorable. How does this arrangement result in higher entropy for the system, and thus make bilayer formation energetically favorable? (a) Polar head groups form a hydrogen-bonding network at the interface with water. (b) Water molecules form cagelike structures around hydrophobic molecules. (c) Hydrogen bonds form between neighboring polar head groups in the bilayer. (d) Fatty acid tails are highly saturated and flexible.

(b) Water molecules form cagelike structures around hydrophobic molecules.

Studies conducted with a lysozyme mutant that contains an AspAsn change at position 52 and a a in enzymatic GluGln change at position 35 exhibited almost complete loss activity. What is the most likely explanation for the decrease in enzyme activity in the mutant? (a) increased affinity for substrate (b) absence of negative charges in the active site (c) change in the active-site scaffold (d) larger amino acids in the active site decreases the affinity for substrate

(b) absence of negative charges in the active site

Membrane proteins, like membrane lipids, can move laterally by exchanging positions with other membrane components. Which type of membrane proteins is expected to be the least mobile, based on their function? (a) channels (b) anchors (c) receptors (d) enzymes

(b) anchors

Which of the following is nota feature commonly observed in βsheets? (a) antiparallel regions (b) coiled-coil patterns (c) extended polypeptide backbone (d) parallel regions

(b) coiled-coil patterns

Coiled-coils are typically found in proteins that require an elongated structural framework. Which of the following proteins do you expect to have a coiled-coil domain? (a) insulin (b) collagen (c) myoglobin (d) porin

(b) collagen

Which of the following occur without coupling transport of the solute to the movement of a second solute? (a) import of glucose into gut epithelial cells (b) export of Ca2+ from the cytosol (c) export of H+ from animal cells for pH regulation (d) the export of Na+ from cells to maintain resting membrane potential

(b) export of Ca2+ from the cytosol

In humans, glycogen is a more useful food-storage molecule than fat because _____________________. (a) a gram of glycogen produces more energy than a gram of fat. (b) it can be utilized to produce ATP under anaerobic conditions, whereas fat cannot. (c) it binds water and is therefore useful in keeping the body hydrated. (d) for the same amount of energy storage, glycogen occupies less space in a cell than does fat.

(b) it can be utilized to produce ATP under anaerobic conditions, whereas fat cannot.

Which type of defect described below is the most likely to cause the redistribution of that protein around the entire cell (a) a nonfunctional protein glycosylase (b) the deletion of a junctional protein (c) the truncation of a protein found in the extracellular matrix (d) a nonfunctional flippase

(b) the deletion of a junctional protein

You isolate a pathogenic strain of E. coli from a patient and discover that this E. coli strain is resistant to an antibiotic. Common laboratory strains of E. coli are not resistant to this antibiotic, nor are any other previously isolated pathogenic E. coli strains. However, such resistance has been observed in other bacteria in the hospital in which the patient was treated. This newly discovered antibiotic resistance in E. coli is most likely due to _______. (a) a mutation within a gene. (b) a mutation within the regulatory DNA of a gene. (c) gene duplication. (d) horizontal gene transfer.

(d) horizontal gene transfer.

Although all protein structures are unique, there are common structural building blocks that are referred to as regular secondary structures. Some proteins have α helices, some have β sheets, and still others have a combination of both. What makes it possible for proteins to have these common structural elements? (a) specific amino acid sequences (b) side-chain interactions (c) the hydrophobic-core interactions (d) hydrogen bonds along the protein backbone

(d) hydrogen bonds along the protein backbone

Lysozyme is an enzyme that specifically recognizes bacterial polysaccharides, which renders it an effective antibacterial agent. Into what classification of enzymes does lysozyme fall? (a) isomerase (b) protease (c) nuclease (d) hydrolase

(d) hydrolase

Which of the following would contribute most to successful exon shuffling? (a) shorter introns (b) a haploid genome (c) exons that code for more than one protein domain (d) introns that contain regions of similarity to one another

(d) introns that contain regions of similarity to one another

Cholesterol serves several essential functions in mammalian cells. Which of the following is not influenced by cholesterol? (a) membrane permeability (b) membrane fluidity (c) membrane rigidity (d) membrane thickness

(d) membrane thickness

Which of the following stages in the breakdown of the piece of toast you had for breakfast generates the most ATP? (a) the digestion of starch to glucose (b) glycolysis (c) the citric acid cycle (d) oxidative phosphorylation

(d) oxidative phosphorylation

The lateral movement of transmembrane proteins can be restricted by several different mechanisms. Which mechanism best describes the process by which nutrients are taken up at the apical surface of the epithelial cells that line the gut and released from their basal and lateral surfaces? (a) proteins are tethered to the cell cortex (b) proteins are tethered to the extracellular matrix (c) proteins are tethered to the proteins on the surface of another cell (d) protein movement is limited by the presence of a diffusion barrier

(d) protein movement is limited by the presence of a diffusion barrier

Membrane curvature is influenced by the differential lipid composition of the two membrane monolayers. Which factor do you think has the largest impact on the curvature of biological membranes? (a) amount of cholesterol (b) charge of the lipid head group (c) length of the hydrocarbon tails (d) size of the lipid head group

(d) size of the lipid head group

Red blood cells have been very useful in the study of membranes and the protein components that provide structural support. Which of the following proteins is the principal fibrous protein in the cortex of the red blood cell? (a) tubulin (b) attachment proteins (c) actin (d) spectrin

(d) spectrin

The stimulation of auditory nerves depends on the opening and closing of channels in the auditory hair cells. Which type of gating mechanism do these cells use? (a) voltage-gated (b) extracellular ligand-gated (c) intracellular ligand-gated (d) stress-gated

(d) stress-gated

The oxygen-dependent reactions required for cellular respiration were originally thought to occur in a linear pathway. By using a competitive inhibitor for one enzyme in the pathway, investigators discovered that these reactions occur in a cycle. Which enzyme was inhibited? (a) aconitase (b) isocitrate dehydrogenase (c) malate dehydrogenase (d) succinate dehydrogenase

(d) succinate dehydrogenase

DNA can be introduced into bacteria by a mechanism called ____________. (a) transcription. (b) ligation. (c) replication. (d) transformation.

(d) transformation.

Which of the following is required for the secretion of neurotransmitters in response to an action potential? (a) neurotransmitter receptors (b) Na+-K+ pumps (c) voltage-gated K+ channels (d) voltage-gated Ca2+ channels

(d) voltage-gated Ca2+ channels

β Sheets can participate in the formation of amyloid fibers, which are insoluble protein aggregates. What drives the formation of amyloid fibers? (a) denaturation of proteins containing β sheets (b) extension of β sheets into much longer β strands (c) formation of biofilms by infectious bacteria (d) β-sheet stabilization of abnormally folded proteins

(d) β-sheet stabilization of abnormally folded proteins

T/F Horizontal gene transfer is very rare and thus has had little influence on the genomes of bacteria.

False. By some estimates, 20% of the genomic DNA in some bacterial species arose by horizontal gene transfer.

T/F To meet a challenge or develop a new function, evolution essentially builds from first principles, designing from scratch, to find the best possible solution.

False. Evolution can work only by tinkering with the tools and materials on hand, not by starting from scratch to make completely new genes or pathways.

There is little conserved synteny between human and mouse genes.

False. Human and mouse chromosomes show extensive synteny, with blocks of chromosomal DNA exhibiting homologous genes arranged in the same order between the two species.

T/F Nearly every instance of DNA duplication leads to a new functional gene.

False. Many duplications are subsequently lost or become pseudogenes, and only a few evolve into new genes.

The differences between multicellular organisms are largely explained by the different kinds of genes carried on their chromosomes.

False. Multicellular organisms are built from essentially the same toolbox of gene building blocks, but the parts are put together differently because of regulatory differences that dictate when and where and how much of each protein is made.

A protein acquires a DNA-binding domain.

exon shuffling

Tandem copies of a gene are found in the genome.

gene duplication

A copy of a bacterial gene is now found integrated on a human chromosome.

horizontal gene transfer

Some types of gene are more highly conserved than others. For each of the following pairs of gene functions, choose the one that is more likely to be highly conserved. A. For sugar: genes involved in sexual reproduction / genes involved in metabolism B. DNA replication / developmental pathways C. hormone production / lipid synthesis

A) Sugar metabolism B. DNA replication C. lipid synthesis

Which of the following is not a feature commonly observed in α helices? (a) left-handedness (b) one helical turn every 3.6 amino acids (c) cylindrical shape (d) amino acid side chains that point outward

(a) left-handedness

Which of the following methods would be the most suitable to assess whether your protein exists as a monomer or in a complex? (a) gel-filtration chromatography (b) gel electrophoresis (c) western blot analysis (d) ion-exchange chromatography

(a) gel-filtration chromatography

The citric acid cycle is a series of oxidation reactions that removes carbon atoms from substrates in the form of CO2. Once a molecule of acetyl CoA enters the citric acid cycle, how many complete cycles are required for both of the carbon atoms in its acetyl group to be oxidized to CO2? (a) 1 (b) 2 (c) 3 (d) 4

(d) 4

Cyclic AMP (cAMP) is a small molecule that associates with its binding site with a high degree of specificity. Which types of noncovalent interactions are the most important for providing the "hand in a glove" binding of cAMP? (a) hydrogen bonds (b) electrostatic interactions (c) van der Waals interactions (d) hydrophobic interactions

(a) hydrogen bonds

Which of the following techniques is not appropriate if you want to examine the transcriptome of a specific tissue? (a) in situ hybridization (b) production of a cDNA library (c) RNA-Seq (d) microarray analysis

(a) in situ hybridization

Why is an excess of normal deoxyribonucleoside triphosphate molecules (dNTPs) needed during dideoxy sequencing? (a) DNA polymerase uses the dNTPs to synthesize a DNA molecule complementary to the molecule being sequenced. (b) dNTPs are consumed as energy to fuel the sequencing reactions. (c) When dNTP levels are too low, there will be very few chain-termination events. (d) The dNTPs can hybridize to the fragment to be sequenced and serve as primers for DNA polymerase.

(a) DNA polymerase uses the dNTPs to synthesize a DNA molecule complementary to the molecule being sequenced.

Membrane synthesis in the cell requires the regulation of growth for both halves of the bilayer and the selective retention of certain types of lipids on one side or the other.Which group of enzymes accomplishes both of these tasks? (a) flippases (b) phospholipases (c) convertases (d) glycosylases

(a) flippases

A group of membrane proteins can be extracted from membranes only by using detergents. All the proteins in this group have a similar amino acid sequence at their C-terminus: -KKKKKXXC (where K stands for lysine, X stands for any amino acid, and C stands for cysteine). This sequence is essential for their attachment to the membrane. What is the most likely way in which the C-terminal sequence attaches these proteins to the membrane? (a) The cysteine residue is covalently attached to a membrane lipid. (b) The peptide spans the membrane as an α helix. (c) The peptide spans the membrane as part of a β sheet. (d) The positively charged lysine residues interact with an acidic integral membrane protein.

(a) The cysteine residue is covalently attached to a membrane lipid.

Which of the following statements is true? (a) The intron structure of most genes is conserved among vertebrates. (b) The more nucleotides there are in an organism's genome, the more genes there will be in its genome. (c) Because the fly Drosophila melanogaster and humans diverged from a common ancestor so long ago, a gene in the fly will show more similarity to another gene from the same species than it will to a human gene. (d) An organism from the same Order as another will be more likely to have a genome of the same size than will a more evolutionarily diverged animal

(a) The intron structure of most genes is conserved among vertebrates.

Protein folding can be studied using a solution of purified protein and a denaturant (urea), a solvent that interferes with noncovalent interactions. Which of the following is observed after the denaturant is removed from the protein solution? (a) The polypeptide returns to its original conformation. (b) The polypeptide remains denatured. (c) The polypeptide forms solid aggregates and precipitates out of solution. (d) The polypeptide adopts a new, stable conformation.

(a) The polypeptide returns to its original conformation.

Which of the following limits the use of PCR to detect and isolate genes? (a) The sequence at the beginning and end of the DNA to be amplified must be known. (b) It also produces large numbers of copies of sequences beyond the 5′ or 3′ end of the desired sequence. (c) It cannot be used to amplify cDNAs or mRNAs. (d) It will amplify only sequences present in multiple copies in the DNA sample.

(a) The sequence at the beginning and end of the DNA to be amplified must be known.

You want to design a DNA probe used for hybridization to isolate a clone from a cDNA library. Which of the following statements about DNA probes is true? (a) The shorter the DNA probe used to probe the library, the greater the number of colonies to which the probe might hybridize. (b) A DNA probe that contains sequences that span two exons is better suited to the purpose than a DNA probe that only contains sequences from one exon. (c) A the DNA that DNA probe that contains sequences immediately upstream of codes for the first methionine in the open reading frame will usually not hybridize to clones in a cDNA library. (d) Hybridization of a DNA probe to the plasmid of interest will permit the detection of the clone of interest; labeling of the DNA probe is not necessary.

(a) The shorter the DNA probe used to probe the library, the greater the number of colonies to which the probe might hybridize.

Porin proteins form large, barrel-like channels in the membrane. Which of the following is not true about these channels? (a) They are made primarily of α helices. (b) They are made primarily of β sheets. (c) They cannot form narrow channels. (d) They have alternating hydrophobic and hydrophilic amino acids.

(a) They are made primarily of α helices.

In step 4 of glycolysis, a six-carbon sugar (fructose 1,6-bisphosphate) is cleaved to produce two three-carbon molecules (dihydroxyacetone phosphate and glyceraldehyde 3-phosphate). Which enzyme catalyzes this reaction? (a) aldolase (b) phosphoglucose isomerase (c) enolase (d) triose phosphate isomerase

(a) aldolase

Select the best option to fill in the blanks of the following statement: Fermentation is a/an _____________________ process that converts _____________ into carbon dioxide and _____________________. (a) anaerobic, pyruvate, ethanol (b) anaerobic, lactate, ethanol (c) eukaryotic, glyceraldehyde 3-phosphate, ethanol (d) prokaryotic, lactate, propanol

(a) anaerobic, pyruvate, ethanol

Which of the following cells rely exclusively on glycolysis to supply them with ATP? (a) anaerobically growing yeast (b) aerobic bacteria (c) skeletal muscle cells (d) plant cells

(a) anaerobically growing yeast

A plasmid ______________. (a) can confer antibiotic resistance to a bacterium. (b) is a single-stranded circular DNA molecule that can undergo horizontal transfer among bacteria. (c) is a tool designed in the lab and never found in naturally occurring bacteria. (d) always becomes part of the bacterial chromosome during transformation.

(a) can confer antibiotic resistance to a bacterium.

Plasma membranes are extremely thin and fragile, requiring an extensive support network of fibrous proteins. This network is called the ____________. (a) cortex. (b) attachment complex. (c) cytoskeleton. (d) spectrin.

(a) cortex.

New membrane phospholipids are synthesized by enzymes bound to the _____________ side of the _________________ membrane. (a) cytosolic, mitochondrial (b) luminal, Golgi (c) cytosolic, endoplasmic reticulum (d) extracellular, plasma

(a) cytosolic, mitochondrial

Globular proteins fold up into compact, spherical structures that have uneven surfaces. They tend to form multisubunit complexes, which also have a rounded shape. Fibrous proteins, in contrast, span relatively large distances within the cell and in the extracellular space. Which of the proteins below is not classified as a fibrousprotein? (a) elastase (b) collagen (c) keratin (d) elastin

(a) elastase

The amino acid sequences below represent the sequences of transmembrane helices. The characteristics of α helices that form a channel are different from those that form a single transmembrane domain. Select the helix that forms a single transmembrane domain. (a) VGHSLSIFTLVISLGIFVFF (b) IMIVLVMLLNIGLAILFVHF (c) ILHFFHQYMMACNYFWMLCE (d) VTLHKNMFLTYILNSMIIII

(b) IMIVLVMLLNIGLAILFVHF

Which of the following statements about gel-transfer hybridization (or Southern blotting) is false? (a) This technique involves the transfer of DNA molecules from gel onto nitrocellulose paper or nylon paper. (b) In this technique, single-stranded DNA is separated by electrophoresis. (c) A labeled DNA probe binds to the DNA by hybridization. (d) The DNA that is separated on a gel is not labeled.

(b) In this technique, single-stranded DNA is separated by electrophoresis. During Southern blotting, double-stranded DNA is loaded onto the agarose gel. The DNA becomes denatured (and thus single-stranded) as it gets transferred by the alkali solution from the gel to the nitrocellulose or nylon sheet.

Which of the following best describes the behavior of a gated channel? (a) It stays open continuously when stimulated. (b) It opens more frequently in response to a given stimulus. (c) It opens more widely as the stimulus becomes stronger. (d) It remains closed if unstimulated.

(b) It opens more frequently in response to a given stimulus.

Cells use membranes to help maintain set ranges of ion concentrations inside and outside the cell. Which of the following ions is the most abundant inside a typical mammalian cell? (a) Na+ (b) K+ 2+ (c) Ca (d) Cl-

(b) K+ 2+

Active transport requires the input of energy into a system so as to move solutes against their electrochemical and concentration gradients. Which of the following is not one of the common ways to perform active transport? (a) Na+-coupled (b) K+-coupled (c) ATP-driven (d) light-driven

(b) K+-coupled

In the photosynthetic archaean Halobacterium halobium, a membrane transport protein called bacteriorhodopsin captures energy from sunlight and uses it to pump protons out of the cell. The resulting proton gradient serves as an energy store that can later be tapped to generate ATP. Which statement best describes how bacteriorhodopsin operates? (a) The absorption of sunlight triggers a contraction of the β barrel that acts as the protein's central channel, squeezing a proton out of the cell. (b) The absorption of sunlight triggers a shift in the conformation of the protein's seven, membrane spanning α helices, allowing a proton to leave the cell. (c) The absorption of sunlight triggers a restructuring of bacteriorhodopsin's otherwise unstructured core to form the channel through which a proton can exit the cell. (d) The absorption of sunlight triggers the activation of an enzyme that generates ATP.

(b) The absorption of sunlight triggers a shift in the conformation of the protein's seven, membrane spanning α helices, allowing a proton to leave the cell.

Insulin is a small protein that regulates blood sugar level and is given to patients who suffer from diabetes. Many years ago, diabetics were given insulin that had been purified from pig pancreas. Once recombinant DNA techniques became available, the DNA encoding insulin could be placed into an expression vector and insulin could be produced in bacteria. Which of the following is NOT a reason why purifying insulin from bacteria is a better way to produce insulin for diabetics than using insulin purified from a pig pancreas. (a) Insulin can be easily produced in large quantities from cells carrying the cloned DNA sequence. (b) The creation of transgenic pigs that expressed insulin was very expensive compared to the cost of creating bacteria that expressed insulin. (c) Insulin made from a bacterial culture and then purified will be free of any possible contaminating viruses that pigs (and any other animals) harbor. Since pigs are more closely related to people than bacteria are, their viruses are more likely to be harmful to people than are viruses that might infect bacteria. (d) The pig protein has slight amino acid differences compared to the human protein, so human insulin produced by bacteria will work better in people.

(b) The creation of transgenic pigs that expressed insulin was very expensive compared to the cost of creating bacteria that expressed insulin.

Steps 7 and 10 of glycolysis result in substrate-level phosphorylation. Which of the following best describes this process? (a) ATP is being hydrolyzed to phosphorylate the substrate. (b) The energy derived from substrate oxidation is coupled to the conversion of ADP to ATP. (c) Two successive phosphates are transferred, first to AMP, then to ADP, finally forming ATP. (d) The substrate is hydrolyzed using ATP as an energy source.

(b) The energy derived from substrate oxidation is coupled to the conversion of ADP to ATP.

In anaerobic conditions, skeletal muscle produces _____________. (a) lactate and CO2. (b) ethanol and CO2. (c) lactate only. (d) ethanol only.

(c) lactate only.

Step 6 of the citric acid cycle is catalyzed by succinate dehydrogenase. Keeping in mind that dehydrogenases catalyze redox reactions, which are the products of the reaction in which succinate is oxidized? (a) fumarate, NADH (b) fumarate, FADH2 (c) fumarate, FADH2 (d) succinyl CoA, NADH

(b) fumarate, FADH2

Which of the following methods would be the most suitable to assess the relative purity of a protein in a sample you have prepared? (a) gel-filtration chromatography (b) gel electrophoresis (c) western blot analysis (d) ion-exchange chromatography

(b) gel electrophoresis

Which of the following polymers of glucose is used as a vehicle to store energy reserves in animal cells? (a) glucagon (b) glycogen (c) starch (d) glycerol

(b) glycogen

Two or three α helices can sometimes wrap around each other to form coiled-coils. The stable wrapping of one helix around another is typically driven by ________________ interactions. (a) hydrophilic (b) hydrophobic (c) van der Waals (d) ionic

(b) hydrophobic

Where does most new membrane synthesis take place in a eukaryotic cell? (a) in the Golgi apparatus (b) in the endoplasmic reticulum (c) in the plasma membrane (d) in the mitochondria (e) on ribosomes

(b) in the endoplasmic reticulum

The concentration of H+ ions inside the mitochondrial matrix is lower than it is in the cytosol or the mitochondrial intermembrane space. What would be the immediate effect of a membrane-permeable compound that carries and releases protons into the mitochondrial matrix? (a) inhibition of the electron-transport chain (b) inhibition of ATP synthesis (c) increased import of ADP into the matrix (d) inhibition of the citric acid cycle

(b) inhibition of ATP synthesis

Proteins bind selectively to small-molecule targets called ligands. The selection of one ligand out of a mixture of possible ligands depends on the number of weak, noncovalent interactions in the protein's ligand-binding site. Where is the binding site typically located in the protein structure? (a) on the surface of the protein (b) inside a cavity on the protein surface (c) buried in the interior of the protein (d) forms on the surface of the protein in the presence of ligand

(b) inside a cavity on the protein surface

Ca2+-pumps in the plasma membrane and endoplasmic reticulum are important for _____________. (a) maintaining osmotic balance. (b) preventing Ca2+ from altering the activity of molecules in the cytosol. (c) providing enzymes in the endoplasmic reticulum with Ca2+ ions that are necessary for their catalytic activity. (d) maintaining a negative membrane potential.

(b) preventing Ca2+ from altering the activity of molecules in the cytosol.

The activity, the phosphorylation of a protein is typically associated with a change in assembly of a protein complex, or the triggering of a downstream signaling cascade. The addition of ubiquitin, a small polypeptide, is another type of covalent modification that can affect the protein function. Ubiquitylation often results in ______________. (a) membrane association. (b) protein degradation. (c) protein secretion. (d) nuclear translocation.

(b) protein degradation.

The lateral movement of transmembrane proteins can be restricted by several different mechanisms. Which mechanism best describes the process by which focal adhesions are formed to promote cell motility? (a) proteins are tethered to the cell cortex (b) proteins are tethered to the extracellular matrix (c) proteins are tethered to the proteins on the surface of another cell (d) protein movement is limited by the presence of a diffusion barrier

(b) proteins are tethered to the extracellular matrix

The final metabolite produced by glycolysis is ___________. (a) acetyl CoA. (b) pyruvate. (c) 3-phosphoglycerate. (d) glyceraldehyde 3-phosphate.

(b) pyruvate.

Which of the following DNA sequences is not commonly carried on a DNA-only transposon? (a) transposase gene (b) reverse transcriptase gene (c) recognition site for transposase (d) antibiotic-resistance gene

(b) reverse transcriptase gene; The reverse transcriptase gene is found on retrotransposons that move via an RNA intermediate.

The the presence of plasma membrane serves many functions, many of which depend on specialized membrane proteins. Which of the following roles of the plasma membrane could still occur if the bilayer were lacking these proteins? (a) intercellular communication (b) selective permeability (c) cellular movement (d) import/export of molecules

(b) selective permeability

The variations in the physical characteristics between different proteins are influenced by the overall amino acid compositions, but even more important is the unique amino acid ______________. (a) number. (b) sequence. (c) bond. (d) orientation.

(b) sequence.

The oxygen-dependent reactions required for cellular respiration were originally thought to occur one in the in a linear pathway. By using a competitive inhibitor for enzyme pathway, investigators discovered that these reactions occur in a cycle. Which product in the reaction pathway builds up when the inhibitor is added? (a) citrate (b) succinate (c) fumarate (d) malate

(b) succinate

Recombinant DNA technologies involve techniques that permit the creation of custom- made DNA molecules that can be introduced back into living organisms. These technologies were first developed in the ______. (a) 1930s. (b) 1950s. (c) 1970s. (d) 1990s.

(c) 1970s.

Glycolysis generates more stored energy than it expends. What is the net number of activated carrier molecules produced in this process (number and type of molecules produced minus the number of those molecules used as input)? (a) 6 ATP, 2 NADH (b) 4 ATP, 4 NADH (c) 2 ATP, 2 NADH (d) 4 ATP, 2 NADH

(c) 2 ATP, 2 NADH

A finished draft of the human genome was published in ______. (a) 1965. (b) 1984. (c) 2004. (d) 2012.

(c) 2004.

Several different classes of enzymes are needed for the catabolism of carbohydrates. Which of the following descriptions best matches the function of a dehydrogenase? (a) An enzyme that catalyzes the rearrangement of bonds within a single molecule. (b) An enzyme that catalyzes a change in the position of a specific chemical group within a single molecule. (c) An enzyme that catalyzes the oxidation of a molecule by removing a hydride ion. (d) An enzyme that catalyzes the addition of phosphate groups to other molecules.

(c) An enzyme that catalyzes the oxidation of a molecule by removing a hydride ion.

Which of the following statements about RNA interference (or RNAi) is false? (a) RNAi is a natural mechanism used to regulate genes. (b) During the process of RNAi, hybridization of a small RNA molecule with the mRNA degrades the mRNA. (c) Because RNAi depends on the introduction of a double-stranded RNA into a cell or an organism, it is not a process that can cause heritable changes in gene expression. (d) In C. elegans, RNAi can be introduced into the animals by feeding them with bacteria that produce the inhibitory RNA molecules.

(c) Because RNAi depends on the introduction of a double-stranded RNA into a cell or an organism, it is not a process that can cause heritable changes in gene expression.

Why are dideoxyribonucleoside triphosphates used during DNA sequencing? (a) They cannot be incorporated into DNA by DNA polymerase. (b) They are incorporated into DNA particularly well by DNA polymerases from thermophilic bacteria. (c) Incorporation of a dideoxyribonucleoside triphosphate leads to the termination of replication for that strand. (d) Dideoxyribonucleoside triphosphates are more stable than deoxyribonucleoside triphosphates.

(c) Incorporation of a dideoxyribonucleoside triphosphate leads to the termination of replication for that strand.

If Na+ channels are opened in a cell that was previously at rest, how will the resting membrane potential be affected? (a) The membrane potential is not affected by Na+ (b) It becomes more negative. (c) It becomes more positive. (d) It is permanently reset.

(c) It becomes more positive.

The yeast genome was sequenced more than 15 years ago, yet the total number of genes continues to be refined. The sequencing of closely related yeast species was important for validating the identity of short (less than 100 nucleotides long) open reading frames (ORFs) that were otherwise difficult to predict. What is the main reason that these short ORFs are hard to find without the genomes of other yeast for comparison? (a) Short ORFs are found only in yeast. (b) The short ORFs code for RNAs. (c) Many short stretches of DNA may lack a stop codon simply by chance, making it difficult to distinguish those DNA sequences that code for proteins from those that do not. (d) Short ORFs occur mainly in rich gene-regions, making them difficult to identifyby computer programs.

(c) Many short stretches of DNA may lack a stop codon simply by chance, making it difficult to distinguish those DNA sequences that code for proteins from those that do not.

Glyceraldehyde 3-phosphate dehydrogenase operates by stripping a hydride ion from its substrate. Which molecule is the recipient of the proton and two electrons during this transfer? (a) oxygen (b) acetyl CoA (c) NAD+ (d) FADH

(c) NAD+

Which of the following statements is true? (a) Peptide bonds are the only covalent bonds that can link together two amino acids in proteins. (b) The polypeptide backbone is free to rotate about each peptide bond. (c) Nonpolar amino acids tend to be found in the interior of proteins. (d) The sequence of the atoms in the polypeptide backbone varies between different proteins.

(c) Nonpolar amino acids tend to be found in the interior of proteins.

HIV is a human retrovirus that integrates into the host cell's genome and will eventually replicate, produce viral proteins, and ultimately escape from the host cell. Which of the following proteins is not encoded in the HIV genome? (a) reverse transcriptase (b) envelope protein (c) RNA polymerase (d) capsid protein

(c) RNA polymerase

Which of the following statements about the carbohydrate coating of the cell surface is false? (a) It is not usually found on the cytosolic side of the membrane. (b) It can play a role in cell-cell adhesion. (c) The arrangement of the oligosaccharide side chains is highly ordered, much like the peptide bonds of a polypeptide chain. (d) Specific oligosaccharides can be involved in cell-cell recognition.

(c) The arrangement of the oligosaccharide side chains is highly ordered, much like the peptide bonds of a polypeptide chain.

Unlike soluble, cytosolic proteins, membrane proteins are more difficult to purify. Which of the following substances is most commonly used to help purify a membrane protein? (a) high salt solution (b) sucrose (c) detergent (d) ethanol

(c) detergent

When the net charge on either side of the plasma membrane is zero, what else is true? (a) There an equal number of K+ is ions on each side of the plasma membrane. (b) The K+ leak channels are open. (c) The electrochemical potential across the membrane is zero. (d) The resting membrane potential is between -20 mV and -200 mV

(c) The electrochemical potential across the membrane is zero.

Which of the following statements about genomic DNA libraries is false? (a) The larger the size of the fragments used to make the library, the fewer colonies you will have to examine to find a clone that hybridizes to your probe. (b) The larger the size of the fragments used to make the library, the more difficult it will be to find your gene of interest once you have identified a clone that hybridizes to your probe. (c) The larger the genome of the organism from which a library is derived, the larger the fragments inserted into the vector will tend to be. (d) The smaller the gene you are seeking, the more likely it is that the gene will be found on a single clone.

(c) The larger the genome of the organism from which a library is derived, the larger the fragments inserted into the vector will tend to be.

Which of the following statements about resting membrane potential is not true? (a) The resting membrane potential for most animal cells is 0 mV, because the positive and negative ions are in balance. (b) The resting membrane potential for most animal cells is positive, because Na+ ions are so plentiful inside cells. (c) The resting membrane potential for most animal cells is negative, because the inside of the cell is more negatively charged than the outside of the cell. (d) At the resting membrane potential, no ions enter or exit the cell.

(c) The resting membrane potential for most animal cells is negative, because the inside of the cell is more negatively charged than the outside of the cell.

Which of the following statements about resting membrane potential is true? (a) The resting membrane potential for most animal cells is 0 mV, because the positive and negative ions are in balance. (b) The resting membrane potential for most animal cells is positive, because Na+ ions are so plentiful inside cells. (c) The resting membrane potential for most animal cells is negative, because the inside of the cell is more negatively charged than the outside of the cell. (d) At the resting membrane potential, no ions enter or exit the cell.

(c) The resting membrane potential for most animal cells is negative, because the inside of the cell is more negatively charged than the outside of the cell.

In step 1 of the citric acid cycle, citrate is generated by the enzyme citrate synthase. The enzyme combines the two-carbon acetyl group from acetyl CoA and the four-carbon oxaloacetate. What is the source of energy that drives this reaction forward? (a) a high-energy phosphodiester bond (b) a transfer of high-energy electrons (c) a high-energy thioester bond (d) the heat of molecular collision

(c) a high-energy thioester bond

Your friend works in a lab that is studying why a particular mutant strain of Drosophila grows an eye on its wing. Your friend discovers that this mutant strain of Drosophila is expressing a transcription factor incorrectly. In the mutant Drosophila, this transcription factor, which is normally expressed in the primordial eye tissue, is now misexpressed in the primordial wing tissue, thus turning on transcription of the set of genes required to produce an eye in the wing primordial tissue. If this hypothesis is true, which of the following types of genetic change would most likely lead to this situation? (a) a mutation within the transcription factor gene that leads to a premature stop codon after the third amino acid (b) a mutation within the transcription factor gene that leads to a substitution of a positively charged amino acid for a negatively charged amino acid (c) a mutation within an upstream enhancer of the gene (d) a mutation in the TATA box of the gene

(c) a mutation within an upstream enhancer of the gene

Energy required by the cell is generated in the form of ATP. ATP is hydrolyzed to power many of the cellular processes, increasing the pool of ADP. As the relative amount of ADP molecules increases, they can bind to glycolytic enzymes, which will lead to the production of more ATP. The best way to describe this mechanism of regulation is ___________. (a) feedback inhibition. (b) oxidative phosphorylation. (c) allosteric activation. (d) substrate-level phosphorylation.

(c) allosteric activation.

Which of the following mechanisms best describes the manner in which lysozyme lowers the energy required for its substrate to reach its transition-state conformation? (a) by binding two molecules and orienting them in a way that favors a reaction between them (b) by altering the shape of the substrate to mimic the conformation of the transition state (c) by speeding up the rate at which water molecules collide with the substrate (d) by binding irreversibly to the substrate so that it cannot dissociate

(c) by speeding up the rate at which water molecules collide with the substrate

Pyruvate is an important metabolic intermediate that can be converted into several other compounds, depending on which enzyme is catalyzing the reaction. Which of the following cannot be produced from pyruvate in a single enzyme-catalyzed reaction? (a) lactate (b) oxaloacetate (c) citrate (d) alanine

(c) citrate

Which of the following steps or processes in aerobic respiration include the production of carbon dioxide? (a) breakdown of glycogen (b) glycolysis (c) conversion of pyruvate to acetyl CoA (d) oxidative phosphorylation

(c) conversion of pyruvate to acetyl CoA

The advantage to the cell of the gradual oxidation of glucose during cellular respiration compared with its combustion to CO2 and H2O in a single step is that ________________. (a) more free energy is released for a given amount of glucose oxidized. (b) no energy is lost as heat. (c) energy can be extracted in usable amounts. (d) more CO2 is produced for a given amount of glucose oxidized.

(c) energy can be extracted in usable amounts.

The intermediates of the citric acid cycle are constantly being depleted because they are used to produce many of the amino acids needed to make proteins. The enzyme pyruvate carboxylase converts pyruvate to oxaloacetate to replenish these intermediates. Bacteria, but not animal cells, have additional enzymes that can carry out the reaction acetyl CoA + isocitrate → oxaloacetate + succinate. Which of the following compounds will not support the growth of animal cells when used as the major source of carbon in food, but will support the growth of nonphotosynthetic bacteria? (a) pyruvate (b) glucose (c) fatty acids (d) fructose

(c) fatty acids In oxidative metabolism, fatty acids can only be converted to acetyl CoA, which is completely oxidized to carbon dioxide through the citric acid cycle. In addition, bacteria can use some of this acetyl CoA as a source of carbon atoms to replenish the components of the citric acid cycle, whereas animals cannot.

Which reaction does the enzyme phosphoglucose isomerase catalyze? (a) glucose → glucose 6-phosphate (b) fructose 6-phosphate → fructose 1,6-bisphosphate (c) glucose 6-phosphate → fructose 6-phosphate (d) glucose → glucose 1-phosphate

(c) glucose 6-phosphate → fructose 6-phosphate

Which of the following gated ion channels are involved in inhibitory synaptic signaling? (a) voltage-gated Na+ channels (b) voltage-gated Ca 2+ channels (c) glycine-gated Cl-channels (d) glutamate-gated cation channels

(c) glycine-gated Cl-channels

A double-stranded DNA molecule can be separated into single strands by heating it to 90°C because _______________________. (a) heat disrupts the hydrogen bonds holding the sugar-phosphate backbone together. (b) DNA is negatively charged. (c) heat disrupts hydrogen-bonding between complementary nucleotides. (d) DNA is positively charged.

(c) heat disrupts hydrogen-bonding between complementary nucleotides.

Approximately, how many distinct synapses are established on the dendrites and cell body of a motor neuron in the spinal cord? (a) tens (b) hundreds (c) thousands (d) millions

(c) thousands

Which of the following methods would be the most suitable to assess levels of expression of your target protein in different cell types? (a) gel-filtration chromatography (b) gel electrophoresis (c) western blot analysis (d) ion-exchange chromatography

(c) western blot analysis

Negatively charged ions are required to balance the net positive charge from metal ions ++2+ such as K, Na, and Ca. Which of the following negatively charged ions is the most abundant in the cell and which ion does most oftenneutralize(written parentheses)? (a) Cl-2+(Ca) (b) PO4 (K3-+) (c) PO3- (Ca2+4) (d) (NaCl-+)

(d) (NaCl-+)

You are studying a gene that has four exons and can undergo alternative splicing. Exon 1 has two alternatives, exon 2 has five alternatives, exon 3 has three alternatives, and exon 4 has four alternatives. If all possible splicing combinations were used, how many different splice isoforms could be produced for this gene? (a) 22 (b) 30 (c) 60 (d) 120

(d) 2 × 5 × 3 × 4 = 120.

Pyruvate must move from the cytosol into the mitochondria, where it is oxidized to form CO2 and acetyl CoA by the pyruvate dehydrogenase complex. How many different enzymes and what total number of polypeptides, respectively, are required to perform this oxidation process in the mitochondrion? (a) 1; 60 (b) 3; 3 (c) 3; 26 (d) 3; 60

(d) 3; 60

You are interested in a single-stranded DNA molecule that contains the following sequence: 5′- .....GATTGCAT.... -3′ Which molecule can be used as a probe that will hybridize to your sequence of interest? (a) 5′-GATTGCAT-3′ (b) 5′-TACGTTAG-3′ (c) 5′-CTAACGTA-3′ (d) 5′-ATGCAATC-3′

(d) 5′-ATGCAATC-3′

In step 3 of the citric acid cycle, the oxidation of isocitrate and the production of CO2 are coupled to the reduction of NAD+, generating NADH and an α-ketoglutamate molecule. In the isocitrate molecule shown in Figure Q13-47, which carbon is lost as CO2 and which is converted to a carbonyl carbon? (a) 4 and 6 (b) 6 and 5 (c) 5 and 4 (d) 6 and 4

(d) 6 and 4

Motor proteins use the energy in ATP to transport organelles, rearrange elements of the cytoskeleton during cell migration, and move chromosomes during cell division. Which of the following mechanisms is sufficient to ensure the unidirectional movement of a motor protein along its substrate? (a) A conformational change is coupled to the release of a phosphate (Pi) (b) The substrate on which the motor moves has a conformational polarity. (c) A conformational change is coupled to the binding of ADP. (d) A conformational change is linked to ATP hydrolysis.

(d) A conformational change is linked to ATP hydrolysis.

Step 3 in glycolysis requires the activity of phosphofructokinase to convert fructose 6- phosphate into fructose 1,6-bisphosphate. Which of the following molecules is an allosteric inhibitor of this enzyme? (a) Pi (b) AMP (c) ADP (d) ATP

(d) ATP

The conversion of fructose 1,6-bisphosphate to fructose 6-phosphate is catalyzed by a fructose 1,6-bisphosphatase and is one of the final steps in gluconeogenesis. Which of the following molecules is an allosteric activator of this enzyme? (a) Pi (b) AMP (c) ADP (d) ATP

(d) ATP

Viral genomes _________. (a) can be made of DNA. (b) can be made of RNA. (c) can be either double-stranded or single-stranded. (d) All answers above are true.

(d) All answers above are true.

Several different classes of enzymes are needed for the catabolism of carbohydrates. Which of the following descriptions best matches the function of a kinase? (a) An enzyme that catalyzes the rearrangement of bonds within a single molecule. (b) An enzyme that catalyzes a change in the position of a specific chemical group within a single molecule. (c) An enzyme that catalyzes the oxidation of a molecule by removing a hydride ion. (d) An enzyme that catalyzes the addition of phosphate groups to other molecules.

(d) An enzyme that catalyzes the addition of phosphate groups to other molecules.

PCR involves a heating step, followed by a cooling step, and then DNA synthesis. What is the primary reason for why this cooling step is necessary? (a) Cooling the reaction ensures the integrity of the covalent bonds holding the nucleotides together in the DNA strand. (b) Cooling the reaction gives the DNA polymerase an opportunity to rest from the previous cycle so that it will be ready for the next round of synthesis. (c) Transcription takes place during the cooling step. (d) Cooling the reaction brings the temperature down to a level that is compatible with the short primers forming stable hydrogen bonds with the DNA to be amplified.

(d) Cooling the reaction brings the temperature down to a level that is compatible with the short primers forming stable hydrogen bonds with the DNA to be amplified.

DNA ligase is an enzyme used when making recombinant DNA molecules in the lab. In what normal cellular process is DNA ligase involved? (a) none, it is only found in virally infected cells (b) transcription (c) transformation (d) DNA replication

(d) DNA replication

Which of the following statements about mobile genetic elements is true? (a) Mobile genetic elements can sometimes rearrange the DNA sequences of the genome in which they are embedded by accidentally excising neighboring places within chromosomal regions and reinserting these sequences into different the genome. (b) DNA-only transposons do not code for proteins but instead rely on transposases found in cells that are infected by viruses. (c) The two major families of transposable sequences found in the human genome are DNA-only transposons that move by replicative transposition. (d) During cut-and-paste transposition, the donor DNA will no longer have the mobile genetic element embedded in its sequence when transposition is complete.

(d) During cut-and-paste transposition, the donor DNA will no longer have the mobile genetic element embedded in its sequence when transposition is complete.

You have been hired to create a cat that will not cause allergic reactions in cat-lovers. Your coworkers have cloned the gene encoding a protein found in cat saliva, expressed the protein in bacteria, and shown that it causes violent allergic reactions in people. But you soon realize that even if you succeed in making a knockout cat lacking this gene, anyone who buys one will easily be able to make more hypoallergenic cats just by breeding of have to buy them. Which the following will ensure that people will always their hypoallergenic cats from you? (a) Inject the modified embryonic stem (ES) cells into embryos that have a genetic defect to prevent the mature adult from reproducing. (b) Implant the injected embryos into a female cat that is sterile as a result of a genetic defect. (c) Sell only the offspring from the first litter of the female cat implanted with the injected embryos. (d) Surgically remove the sexual organs of all the knockouts before you sell them.

(d) Surgically remove the sexual organs of all the knockouts before you sell them.

Which of the following statements is true? (a) Amoebae have transporter proteins that actively pump water molecules from the cytoplasm to the cell exterior. (b) Bacteria and animal cells rely on the Na++ pump in the plasma membrane to -K prevent lysis resulting from osmotic imbalances. (c) The Na++ pump allows animal cells to thrive under conditions of very low ionic -K strength. (d) The Na++ pump helps to keep both Na+- -K and Cl ions out of the cell.

(d) The Na++ pump helps to keep both Na+- -K and Cl ions out of the cell. The Na+-K+ pump keeps Na+-out directly by pumping it out and keeps Cl out indirectly by helping to maintain the negative membrane potential. Cells do not have pumps for moving water molecules across the membrane

You want to design a DNA probe used for hybridization to isolate a clone from a cDNA library. Which of the following concerns about DNA probe design is the most legitimate? (a) You must be careful when designing your probe to take into account which DNA strand was transcribed in mRNA and choose a probe complementary to the mRNA. (b) You must be careful not to include any DNA sequences in your probe that are upstream (5′) of the AUG start codon. (c) You must make sure that all the DNA sequences in your probe lie within an exon, and do not span two exons. (d) You must make sure that all the DNA sequences in your probe are not located downstream (3′) of the polyadenylation signal.

(d) You must make sure that all the DNA sequences in your probe are not located downstream (3′) of the polyadenylation signal.

The Ras protein is a GTPase that functions in many growth-factor signaling pathways. In its active form, with GTP bound, it transmits a downstream signal that leads to cell proliferation; in its inactive form, with GDP bound, the signal is not transmitted. Mutations in the gene for Ras are found in many cancers. Of the choices below, which alteration of Ras activity is most likely to contribute to the uncontrolled growth of cancer cells? (a) a change that prevents Ras from being made (b) a change that increases the affinity of Ras for GDP (c) a change that decreases the affinity of Ras for GTP (d) a change that decreases the rate of hydrolysis of GTP by Ras

(d) a change that decreases the rate of hydrolysis of GTP by Ras Ras is a proto-oncogene. When it is active, it promotes cell growth

Protein structures have several different levels of organization. The primary structure of a protein is its amino acid sequence. The secondary and tertiary structures are more complicated. Consider the definitions below and select the one that best fits the term "protein domain." (a) a small cluster of α helices and β sheets (b) the tertiary structure of a substrate-binding pocket (c) a complex of more than one polypeptide chain (d) a protein segment that folds independently

(d) a protein segment that folds independently

T/F Most genes in vertebrates are unique, and only a few genes are members of multigene families.

False. A large proportion of the genes in vertebrates (and many other species) are members of multigene families.

T/F The increased complexity of humans compared with flies and worms is largely due to the vastly larger number of genes in humans.

False. The number of genes differs only by about a factor of two. It is thought that the increased complexity of humans is due largely to differences in when and where the genes are expressed. Differences in the timing of splicing may also be a major contributor to the relative complexity of humans.

The spread of a mutation in subsequent generations will, of course, depend on its consequences to individuals that inherit it. Order these three possibilities (beneficial to the individual, selectively neutral, or detrimental) to indicate which is most likely to spread and become overrepresented in subsequent generations, and which is most likely to become underrepresented or disappear from the population.

The order is beneficial, selectively neutral, detrimental.

When a mutation arises, it can have three possible consequences: beneficial to the individual, selectively neutral, or detrimental. Order these from most likely to least likely.

The order is selectively neutral, detrimental, beneficial.

What is the most likely explanation of why the overall mutation rates in bacteria and in humans are roughly similar? (a) Cell division needs to be fast. (b) Most mutations are silent. (c) There is a narrow range of mutation rates that offers an optimal balance between keeping the genome stable and generating sufficient diversity in a population. (d) It benefits a multicellular organism to have some variability among its cells.

There is a narrow range of mutation rates that offers an optimal balance between keeping the genome stable and generating sufficient diversity in a population.

Most single-nucleotide polymorphisms cause no observable functional differences between individual humans.

True. Nearly all single-nucleotide polymorphisms have no effect on the appearance or behavior of the individual, but a few cause important differences.

A pseudogene is very similar to a functional gene but cannot be expressed because of mutations.

True. Pseudogenes look very similar to normal genes but cannot produce a full-length protein, as a result of one or more disabling mutations.

Repeats of the CA dinucleotide are useful for crime investigations and other forensic applications.

True. There are CA repeats in many locations throughout the genome. Because the number of repeats at a given location varies greatly between individuals and families, it can be used as an identifying characteristic to match two samples (such as blood samples) from the same or related individuals.

A protein normally expressed only in the liver is now expressed in blood cells. ________

mutation in a regulatory region

A protein becomes much more unstable.

mutation within a gene

A protein normally localized in the nucleus is now localized in the cytoplasm.

mutation within a gene


Ensembles d'études connexes

Chapter 2: Determination of Interest Rates

View Set

Chapter 8&9 calculations acct2301

View Set

PREP U CH 53 Caring for Clients with Disorders of the Female Reprodu

View Set

BIOL 1450 Lab 1 - 6.2 Practical Questions

View Set

bio lab quiz osmosis and cellular membrane

View Set