Ch 3 Review Questions
13) At what temperature is water at its densest? A) 0°C B) 4°C C) 32°C D) 100°C E) 212°C
B
27) Identical heat lamps are arranged to shine on identical containers of water and methanol (wood alcohol), so that each liquid absorbs the same amount of energy minute by minute. The covalent bonds of methanol molecules are non-polar, so there are no hydrogen bonds among methanol molecules. Which of the following graphs correctly describes what will happen to the temperature of the water and the methanol? A) B) C) D) E)
B
2) The slight negative charge at one end of one water molecule is attracted to the slight positive charge of another water molecule. What is this attraction called? A) a covalent bond B) a hydrogen bond C) an ionic bond D) a hydrophilic bond E) a hydrophobic bond
B
Figure 3.2 23) How many grams of the molecule in Figure 3.2 would be equal to 1 mol of the molecule? (Carbon = 12, Oxygen = 16, Hydrogen = 1) A) 29 B) 30 C) 60 D) 150 E) 342
C
1) In a single molecule of water, two hydrogen atoms are bonded to a single oxygen atom by A) hydrogen bonds. B) nonpolar covalent bonds. C) polar covalent bonds. D) ionic bonds. E) van der Waals interactions.
C
5) What gives rise to the cohesiveness of water molecules? A) hydrophobic interactions B) nonpolar covalent bonds C) ionic bonds D) hydrogen bonds E) both A and C
D
9) The nutritional information on a cereal box shows that one serving of a dry cereal has 200 kilocalories. If one were to burn one serving of the cereal, the amount of heat given off would be sufficient to raise the temperature of 20 kg of water how many degrees Celsius? A) 0.2°C B) 1.0°C C) 2.0°C D) 10.0°C E) 20.0°C
D
11) Which type of bond must be broken for water to vaporize? A) ionic bonds B) nonpolar covalent bonds C) polar covalent bonds D) hydrogen bonds E) covalent bonds
D
17) One mole (mol) of a substance is A) 6.02 × 1023 molecules of the substance. B) 1 g of the substance dissolved in 1 L of solution. C) the largest amount of the substance that can be dissolved in 1 L of solution. D) the molecular mass of the substance expressed in grams. E) A and D only
E
18) How many molecules of glucose (C6H2O6 molecular mass =180 daltons) would be present in one mole of glucose? A) 24 B) 342 C) 23 × 1014 D) 180 × 1014 E) 6.02 × 1023
E
19) How many molecules of glycerol (C3H8O3) would be present in 1 L of a 1 M glycerol solution? A) 1 B) 14 C) 92 D) 1 × 107 E) 6.02 × 1023
E
21) The molecular mass of glucose is 180 g. Which of the following procedures should you carry out to make a 1 M solution of glucose? A) Dissolve 1 g of glucose in 1 L of water. B) Dissolve 180 g of glucose in 1 L of water. C) Dissolve 180 g of glucose in 100 g of water. D) Dissolve 180 mg (milligrams) of glucose in 1 L of water. E) Dissolve 180 g of glucose in water, and then add more water until the total volume of the solution is 1 L.
E
16) Hydrophobic substances such as vegetable oil are A) nonpolar substances that repel water molecules. B) nonpolar substances that have an attraction for water molecules. C) polar substances that repel water molecules. D) polar substances that have an affinity for water. E) charged molecules that hydrogen-bond with water molecules.
A
26) A small birthday candle is weighed, then lighted and placed beneath a metal can containing 100 mL of water. Careful records are kept as the temperature of the water rises. Data from this experiment are shown on the graph. What amount of heat energy is released in the burning of candle wax? A) 0.5 kilocalories per gram of wax burned B) 5 kilocalories per gram of wax burned C) 10 kilocalories per gram of wax burned D) 20 kilocalories per gram of wax burned E) 50 kilocalories per gram of wax burned
A
29) The molecular weight of water is 18 daltons. What is the molarity of 1 liter of pure water? A) 55.6M B) 18M C) 37M D) 0.66M E) 1.0M
A
The following question is based on Figure 3.1: solute molecule surrounded by a hydration shell of water. Figure 3.1 15) Based on your knowledge of the polarity of water molecules, the solute molecule is most likely A) positively charged. B) negatively charged. C) without charge. D) hydrophobic. E) nonpolar.
A
22) The molecular mass of glucose (C6H12O6) is 180 g. Which of the following procedures should you carry out to make a 0.5 M solution of glucose? A) Dissolve 0.5 g of glucose in a small volume of water, and then add more water until the total volume of solution is 1 L. B) Dissolve 90 g of glucose in a small volume of water, and then add more water until the total volume of the solution is 1 L. C) Dissolve 180 g of glucose in a small volume of water, and then add more water until the total volume of the solution is 1 L. D) Dissolve 0.5 g of glucose in 1 L of water. E) Dissolve 180 g of glucose in 1 L of water.
B
24) How many grams of the molecule in Figure 3.2 would be required to make 1 L of a 0.5 M solution of the molecule? (Carbon = 12, Oxygen = 16, Hydrogen = 1) A) 29 B) 30 C) 60 D) 150 E) 342
B
3) An example of a hydrogen bond is the bond between A) C and H in methane (CH4). B) the H of one water molecule and the O of another water molecule. C) Na+and Cl- in salt. D) the two hydrogen atoms in a molecule of hydrogen gas (H2). E) Mg+and Cl- in MgCl2.
B
6) Which of the following effects is produced by the high surface tension of water? A) Lakes don't freeze solid in winter, despite low temperatures. B) A water strider can walk across the surface of a small pond. C) Organisms resist temperature changes, although they give off heat due to chemical reactions. D) Water can act as a solvent. E) The pH of water remains exactly neutral.
B
7) Which of the following takes place as an ice cube cools a drink? A) Molecular collisions in the drink increase. B) Kinetic energy in the drink decreases. C) A calorie of heat energy is transferred from the ice to the water of the drink. D) The specific heat of the water in the drink decreases. E) Evaporation of the water in the drink increases.
B
20) When an ionic compound such as sodium chloride (NaCl) is placed in water the component atoms of the NaCl crystal dissociate into individual sodium ions (Na+) and chloride ions (Cl-). In contrast, the atoms of covalently bonded molecules (e.g., glucose, sucrose, glycerol) do not generally dissociate when placed in aqueous solution. Which of the following solutions would be expected to contain the greatest number of particles (molecules or ions)? A) 1 L of 0.5 M NaCl B) 1 L of 0.5 M glucose C) 1 L of 1.0 M NaCl D) 1 L of 1.0 M glucose E) C and D will contain equal numbers of particles.
C
10) Water's high specific heat is mainly a consequence of the A) small size of the water molecules. B) high specific heat of oxygen and hydrogen atoms. C) absorption and release of heat when hydrogen bonds break and form. D) fact that water is a poor heat conductor. E) inability of water to dissipate heat into dry air.
C
12) Temperature usually increases when water condenses. Which behavior of water is most directly responsible for this phenomenon? A) the change in density when it condenses to form a liquid or solid B) reactions with other atmospheric compounds C) the release of heat by the formation of hydrogen bonds D) the release of heat by the breaking of hydrogen bonds E) the high surface tension of water
C
28) You have a freshly-prepared 0.1M solution of glucose in water. Each liter of this solution contains how many glucose molecules? A) 6.02 × 1023 B) 3.01 × 1023 C) 6.02 × 1024 D) 12.04 × 1023 E) 6.02 × 1022
C
30) You have a freshly-prepared 1M solution of glucose in water. You carefully pour out a 100 mL sample of that solution. How many glucose molecules are included in that 100 mL sample? A) 6.02 × 1023 B) 3.01 × 1023 C) 6.02 × 1024 D) 12.04 × 1023 E) 6.02 × 1022
C
4) Water is able to form hydrogen bonds because A) oxygen has a valence of 2. B) the water molecule is shaped like a tetrahedron. C) the bonds that hold together the atoms in a water molecule are polar covalent bonds. D) the oxygen atom in a water molecule has a weak positive charge. E) each of the hydrogen atoms in a water molecule is weakly negative in charge.
C
14) Why does ice float in liquid water? A) The liquid water molecules have more kinetic energy and thus support the ice. B) The ionic bonds between the molecules in ice prevent the ice from sinking. C) Ice always has air bubbles that keep it afloat. D) Hydrogen bonds stabilize and keep the molecules of ice farther apart than the water molecules of liquid water. E) The crystalline lattice of ice causes it to be denser than liquid water.
D
25) How many grams of the molecule in Figure 3.2 would be required to make 2.5 L of a 1 M solution of the molecule? (Carbon = 12, Oxygen = 16, Hydrogen = 1) A) 29 B) 30 C) 60 D) 150 E) 342
D
8) Which of the following statements correctly defines a kilocalorie? A) the amount of heat required to raise the temperature of 1 g of water by 1°F B) the amount of heat required to raise the temperature of 1 g of water by 1°C C) the amount of heat required to raise the temperature of 1 kg of water by 1°F D) the amount of heat required to raise the temperature of 1 kg of water by 1°C E) the amount of heat required to raise the temperature of 1,000 g of water by 1°F
D