CS II Chapter 18 Quiz

Réussis tes devoirs et examens dès maintenant avec Quizwiz!

How many times is the factorial method in Listing 18.1 invoked for factorial(5)? A. 3 B. 4 C. 5 D. 6

D

What are the base cases in the following recursive method? public static void xMethod(int n) { if (n > 0) { System.out.print(n % 10); xMethod(n / 10); } } A. n > 0 B. n <= 0 C. no base cases D. n < 0

B

Show the output of the following code public class Test1 { public static void main(String[] args) { System.out.println(f2(2, 0)); } public static int f2(int n, int result) { if (n == 0) return 0; else return f2(n - 1, n + result); } } A. 0 B. 1 C. 2 D. 3

A

Which of the following statements are true? A. Every recursive method must have a base case or a stopping condition. B. Every recursive call reduces the original problem, bringing it increasingly closer to a base case until it becomes that case. C. Infinite recursion can occur if recursion does not reduce the problem in a manner that allows it to eventually converge into the base case. D. Every recursive method must have a return value. E. A recursive method is invoked differently from a non-recursive method.

A, B and C

Analyze the following functions; public class Test1 { public static void main(String[] args) { System.out.println(f1(3)); System.out.println(f2(3, 0)); } public static int f1(int n) { if (n == 0) return 0; else { return n + f1(n - 1); } } public static int f2(int n, int result) { if (n == 0) return result; else return f2(n - 1, n + result); } } A. f1 is tail recursion, but f2 is not B. f2 is tail recursion, but f1 is not C. f1 and f2 are both tail recursive D. Neither f1 nor f2 is tail recursive

B

How many times is the recursive moveDisks method invoked for 3 disks? A. 3 B. 7 C. 10 D. 14

B

Fill in the code to complete the following method for computing factorial. /** Return the factorial for a specified index */ public static long factorial(int n) { if (n == 0) // Base case return 1; else return _____________; // Recursive call } A. n * (n - 1) B. n C. n * factorial(n - 1) D. factorial(n - 1) * n

C and D

Analyze the following two programs: A: public class Test { public static void main(String[] args) { xMethod(5); } public static void xMethod(int length) { if (length > 1) { System.out.print((length - 1) + " "); xMethod(length - 1); } } } B: public class Test { public static void main(String[] args) { xMethod(5); } public static void xMethod(int length) { while (length > 1) { System.out.print((length - 1) + " "); xMethod(length - 1); } } } A. The two programs produce the same output 5 4 3 2 1. B. The two programs produce the same output 1 2 3 4 5. C. The two programs produce the same output 4 3 2 1. D. The two programs produce the same output 1 2 3 4. E. Program A produces the output 4 3 2 1 and Program B prints 4 3 2 1 1 1 .... 1 infinitely

E

Fill in the code to complete the following method for checking whether a string is a palindrome. public static boolean isPalindrome(String s) { if (s.length() <= 1) // Base case return true; else if _____________________________ return false; else return isPalindrome(s.substring(1, s.length() - 1)); } A. (s.charAt(0) != s.charAt(s.length() - 1)) // Base case B. (s.charAt(0) != s.charAt(s.length())) // Base case C. (s.charAt(1) != s.charAt(s.length() - 1)) // Base case D. (s.charAt(1) != s.charAt(s.length())) // Base case

A

How many times is the fib method in Listing 18.2 invoked for fib(5)? A. 14 B. 15 C. 25 D. 31 E. 32

B

In the following method, what is the base case? static int xMethod(int n) { if (n == 1) return 1; else return n + xMethod(n - 1); } A. n is 1. B. n is greater than 1. C. n is less than 1. D. no base case.

A

Which of the following statements are true? A. The Fibonacci series begins with 0 and 1, and each subsequent number is the sum of the preceding two numbers in the series. B. The Fibonacci series begins with 1 and 1, and each subsequent number is the sum of the preceding two numbers in the series. C. The Fibonacci series begins with 1 and 2, and each subsequent number is the sum of the preceding two numbers in the series. D. The Fibonacci series begins with 2 and 3, and each subsequent number is the sum of the preceding two numbers in the series.

A

Which of the following statements are true? A. Recursive methods run faster than non-recursive methods. B. Recursive methods usually take more memory space than non-recursive methods. C. A recursive method can always be replaced by a non-recursive method. D. In some cases, however, using recursion enables you to give a natural, straightforward, simple solution to a program that would otherwise be difficult to solve

B, C and D

Fill in the code to complete the following method for sorting a list. public static void sort(double[] list) { ___________________________; } public static void sort(double[] list, int high) { if (high > 1) { // Find the largest number and its index int indexOfMax = 0; double max = list[0]; for (int i = 1; i <= high; i++) { if (list[i] > max) { max = list[i]; indexOfMax = i; } } // Swap the largest with the last number in the list list[indexOfMax] = list[high]; list[high] = max; // Sort the remaining list sort(list, high - 1); } } A. sort(list) B. sort(list, list.length) C. sort(list, list.length - 1) D. sort(list, list.length - 2)

C

How many times is the recursive moveDisks method invoked for 4 disks? A. 5 B. 10 C. 15 D. 20

C

What is the return value for xMethod(4) after calling the following method? static int xMethod(int n) { if (n == 1) return 1; else return n + xMethod(n - 1); } A. 12 B. 11 C. 10 D. 9

C

Analyze the following code: public class Test { public static void main(String[] args) { int[] x = {1, 2, 3, 4, 5}; xMethod(x, 5); } public static void xMethod(int[] x, int length) { System.out.print(" " + x[length - 1]); xMethod(x, length - 1); } } A. The program displays 1 2 3 4 6. B. The program displays 1 2 3 4 5 and then raises an ArrayIndexOutOfBoundsException. C. The program displays 5 4 3 2 1. D. The program displays 5 4 3 2 1 and then raises an ArrayIndexOutOfBoundsException

D

Fill in the code to complete the following method for computing a Fibonacci number. public static long fib(long index) { if (index == 0) // Base case return 0; else if (index == 1) // Base case return 1; else // Reduction and recursive calls return __________________; } A. fib(index - 1) B. fib(index - 2) C. fib(index - 1) + fib(index - 2) D. fib(index - 2) + fib(index - 1)

C and D

Fill in the code to complete the following method for binary search. public static int recursiveBinarySearch(int[] list, int key) { int low = 0; int high = list.length - 1; return __________________________; } public static int recursiveBinarySearch(int[] list, int key, int low, int high) { if (low > high) // The list has been exhausted without a match return -low - 1; // Return -insertion point - 1 int mid = (low + high) / 2; if (key < list[mid]) return recursiveBinarySearch(list, key, low, mid - 1); else if (key == list[mid]) return mid; else return recursiveBinarySearch(list, key, mid + 1, high); } A. recursiveBinarySearch(list, key) B. recursiveBinarySearch(list, key, low + 1, high - 1) C. recursiveBinarySearch(list, key, low - 1, high + 1) D. recursiveBinarySearch(list, key, low, high)

D

The following program draws squares recursively. Fill in the missing code. import javax.swing.*; import java.awt.*; public class Test extends JApplet { public Test() { add(new SquarePanel()); } static class SquarePanel extends JPanel { public void paintComponent(Graphics g) { super.paintComponent(g); int width = (int)(Math.min(getWidth(), getHeight()) * 0.4); int centerx = getWidth() / 2; int centery = getHeight() / 2; displaySquares(g, width, centerx, centery); } private static void displaySquares(Graphics g, int width, int centerx, int centery) { if (width >= 20) { g.drawRect(centerx - width, centery - width, 2* width, 2 * width); displaySquares(_________, width - 20, centerx, centery); } } } } A. getGraphics() B. newGraphics() C. null D. g

D

Analyze the following recursive method. public static long factorial(int n) { return n * factorial(n - 1); } A. Invoking factorial(0) returns 0. B. Invoking factorial(1) returns 1. C. Invoking factorial(2) returns 2. D. Invoking factorial(3) returns 6. E. The method runs infinitely and causes a StackOverflowError

E

Fill in the code to complete the following method for checking whether a string is a palindrome. public static boolean isPalindrome(String s) { return isPalindrome(s, 0, s.length() - 1); } public static boolean isPalindrome(String s, int low, int high) { if (high <= low) // Base case return true; else if (s.charAt(low) != s.charAt(high)) // Base case return false; else return _______________________________; } A. isPalindrome(s) B. isPalindrome(s, low, high) C. isPalindrome(s, low + 1, high) D. isPalindrome(s, low, high - 1) E. isPalindrome(s, low + 1, high - 1)

E


Ensembles d'études connexes

The Binomial Theorem Pre-Test 100% Algebra 2.2

View Set

Chapter 7 Security+ Authorized Guide

View Set

A level music, Vaughan Williams main features/ context/ wider listening

View Set

chapter 7: protein function - myoglobin and hemoglobin, muscle contraction, and antibodies

View Set

Chapter 3: Our Genes and Our Environment

View Set

Hematology laboratory testing- Automated/Manual

View Set

Geography Exam 3 Practice Questions

View Set