Exam 2 Chain rule
find the derivative y= sin (sqrt 1+ x^2)
y ' = (xcos (sqrt 1 + x^2)) / sqrt(1+x^2)
find the derivative y= tan(cosx)
y ' = -sin x sec^2 (cosx)
37) find the derivative y= sin (tan (sqrt sinx))
y ' = cos (tan(sqrt sinx)*(sec^2 sqrt(sinx))*1/(2 sqrt(sinx)) * (cosx)
find the derivative of y= (2x-5)^4 (8x^2 -5)^-3
y '= 8(2x-5)^3 (8x^2-5)^-4 (-4x^2 + 30x -5)
find the derivative of y= sin (xcosx)
y' = (cosx - xsinx) cos(xcosx)
find the derivative y = r / (sqrt r^2 +1)
y' = (r^2 +1)^ -3/2
find the derivative y= (1 +cos^2 x)^6
y' = -12 cos xsinx ( 1 + cos^2 x)^5
find the derivative y = cot^2 (sin theta)
y' = -2 cos theta cot (sin theta) csc^2 (sin theta)
Find derivative of function. y= cos (a^3 + x^3)
y' = -3x^2 sin (a^3 + x^3)
find the derivative of y= x^3 cosnx
y' = 3x^2 cos nx - nx^3 sin nx
find the derivative y= sec^2 x + tan^2 x
y' = 4 sec^2 x tanx
find the derivative y= cot(x/2)
y'= -1/2 csc^2 (x/2)
39) Find an equation of the tangent line to the curve at the given point. y= (1 + 2x)^10, (0,1)
y= 20x +1
Find derivative of function. F(x)= 4^ (sqrt 1+2x+^3)
F '(x) = 2+3x^2 / 4(1+2x+x^3)^3/4
find the derivative F(z)= sqrt (z-1/z+1)
F'(z) = 1/ [(z-1)^1/2 (z+1)^3/2]
Find the derivative of function. g(t) = 1/ [ (t^4+1)^3]
g '(t)= - 12t / (t^4 +1)^4
find derivative of g(x) = (1+4x)^5 (3+x-x^2)^8
g'(x) = 4(1+4x)^4 (3+x-x^2)^7 (17+9x-21x^2)