Section 7.3 Part 2: Evaluating Expressions with the Distributive Property
When y=−5, evaluate −(6y+15)−6(4y+1) to show that −(6y+15)−6(4y+1)=−6y−15−6⋅4y−6⋅1
129 129
When h=−2, evaluate −15(6h and −2/5) and −15⋅6h+15⋅2/5 to show that −15(6h and −2/5)=−15⋅6h+15⋅2/5.
186 for the 1st ANSW 186 for the 2nd ANSW
When b=3, evaluate 15(1/3+4/9b) and 15⋅1/3+15⋅4/9b to show that 15(1/3+4/9b)=15⋅13+15⋅4/9b.
25 25
Simplify: 14(2.5b−0.25)−5(b+0.1).
30b−4 14(2.5b−0.25)−5(b+0.1) Distribute. 14⋅2.5b+14⋅(−0.25)−5⋅b−5⋅0.1 Multiply. 35b−3.5−5b−0.5 Simplify. 30b−4
Simplify: 4−(−3h+9).
3h−5
When d=3, evaluate 21−4(−6d+9) and 21−4⋅(−6d)−4⋅9 to show that 21−4(−6d+9)=21−4⋅(−6d)−4⋅9
57 57
Simplify: 5(1/6a+5/7).
5a/6+25/7
Simplify: 2(5y−1)+10y(1−y).
−10y^2+20y−2