Vector Practice--Dot Product and Addition
16
Find 2u · v if u = ⟨4,0⟩ and v = ⟨2,1⟩.
27°
Find the angle between the vectors: u=-6i-5j v=-3i-7j
178.6°
Find the angle between the vectors: u=7i-8j v=-5i+6j
63.4°
Find the angle between the vectors: u=<7,4> v=<9,-6>
49
Find the angle in between the 2 vectors - round to the nearest whole number. u=<-1, 8> and v=<-3,2>
-23
Find u · v if u = 2i - 5j and v = 6i + 7j.
73
Find u · v if u = ⟨4, 25⟩ and v = ⟨-13, 5⟩.
56
Find u · v if u = ⟨8, 2⟩ and v = ⟨6, 4⟩.
-8
Find w · v if v = ⟨1,-3⟩ and w = ⟨-2,2⟩.
⟨10, -5⟩
If A(8, -3) and B(18,-8), find components for vector AB.
⟨-6, 10⟩
If u= ⟨0, 8⟩ and v = ⟨-3, 1⟩, find u + 2v.
⟨9, 8⟩
If u= ⟨20, 6⟩ and v = ⟨-3, 15⟩, find (1/2)u + (1/3)v.
⟨7, -6⟩
If u= ⟨5, -1⟩ and v = ⟨3, 4⟩, find 2u - v.
neither
Parallel, orthogonal or neither? u=<-2, 2/3> and v=<5, -15>
parallel
Parallel, orthogonal or neither? u=<1/3, 5> and v=<-3, -45>
parallel
Use the dot product to determine whether the vectors are parallel, orthogonal, or neither v=4i-j,w=8i-2j
parallel
Use the dot product to determine whether the vectors are parallel, orthogonal, or neither. v=2i+3j, w=4i+6j
neither
Use the dot product to determine whether the vectors are parallel, orthogonal, or neither. v=<1, 2> w=<1,-4>
orthogonal
Use the dot product to determine whether the vectors are parallel, orthogonal, or neither. v=<4,1> w=<1,-4>
-131
u = <-4, -15> v=<14,5> Findu·v.
-55
u=3i-7j v=-10i+9j w=8i-2j Findu·(v+w).
-300
u=4i-8j v=9i-8j Find (-3u) ∙ v.
56
u=8i+4jand v=9i-4j; Findu·v.
80
v=4i-8j; Findv·v.