Chapter 5 Analytic Trig Formulas
cotangent-cosecant Pythagorean
1+cot²(Θ)=csc²(Θ)
tangent-secant Pythagorean
1+tan²(Θ)=sec²(Θ)
Heron's Triangle Formula
AreaΔ=√k(k-a)(k-b)(k-c), where k is the perimeter of triangle, and a,b,c are all of the sides
Area of a Triangle
K=1/2ab sin(C)
cosine negative
cos(-x)=cos(x)
Double Angle Cosine
cos(2α)=2cos²(α)-1
Cosine Half-Angle
cos(x/2)=±√1+cos(x)/2
Cofunction of cosine
cos(y)=sin(π/2-y)
Addition Cosine
cos(α±β)=cos(α)cos(β) (upside↓±) sin(α)sin(β)
cotangent negative
cot(-x)=-cot(x)
Cofunction of cotangent
cot(y=)tan(π/2-y)
Cotangent definition
cot(Θ)=1/tan(Θ)
cosecant negative
csc(-x)=-csc(x)
Cofunction of cosecant
csc(y)=sec(π/2-y)
Cosecant definition
csc(Θ)= 1/sin(Θ)
Law of Cosines
c²=a²+b²-2abcos© or cos©=a²+b²-c²/2ab
secant negative
sec(-x)=sec(x)
Cofunction of secant
sec(y)=csc(π/2-y)
Secant definition
sec(Θ)=1/cos(Θ)
sine negative
sin(-x)=-sin(x)
Double Angle Sine
sin(2α)=2sin(α)cos(α)
Law of Sines
sin(A)/a=sin(B)/b=sin(C)/c
Sine Half-Angle
sin(x/2)=±√1-cos(x)/2
Cofunction of sine
sin(y)=cos(π/2-y)
Addition Sine
sin(α±β)=sin(α)cos(β)±sin(β)cos(α)
sine-cosine Pythagorean
sin²(Θ)+cos²(Θ)=1
tangent negative
tan(-x)=-tan(x)
Double Angle Tangent
tan(2α)=2tan(α)/1-tan²(α)
Tangent Half-Angle
tan(x/2)=sin(x)/1+cos(x)=1-cos(x)/sin(x)
Cofunction of tangent
tan(y)=cot(π/2-y)
Addition Tangent
tan(α±β)=tan(α)±tan(β)/1(upside↓±)tan(α)tan(β)