Math264-1

अब Quizwiz के साथ अपने होमवर्क और परीक्षाओं को एस करें!

Find critical points and 2nd derivative test. f(x,y)=1+(2x+1)^2+y2

(-1/2,0) point of local minimum

critical points for f(x,y)=2x4+y4

(0,0) Inconclusive

Critical points for f(x,y)=4+2x2+3y2

(0,0) local minimum

Critical points of f(x,y)=x2+2y2-4x+4y+6

(2,-1) local minimum

Find an equation for the plane that passes through Po(2,-3,4) with the normal n=<-1,2,3>

-x+2y+3z=4

Linear approximation o f(x,y)=5/(x2+y2) (-1,2,1)

0.4x-0.8y+3

lim (x,y)-->(1,0) (x+y)

1+0=1

Find an equation of the plane that passes through P(2,-1,3), Q(1,4,0), R(0,-1,5)

10x+8y+10z=42

lim(x,y)-->(4,1) (xy-4y2)/sqrt(x)-(2sqrt(y))

4

Find linear approximation and use to approximate f(1.2,1.3) f(x,y)=4+x6y+y6x (1,1)

7x+7y-8 9.5

Find the gradient f(x,y)=e^(-x2-2y2) at P(1,1)

<-2e^-3, -4e^-3>

Gradient of f(x,y)=x^2 +2xy-y^3 P(3,2)

<10.-6>

Domain of sin(x/y)

All pairs such that y doesnt =0

Find the domain of f(x,y)=e^(x/y+1)

All the pairs (x,y) such that y+1 doesnt equal 0, y doesnt equal -1

Directional derivative of f(x,y)=1/4(x2+2y2+2 P(3,2) u=<1/sqrt2,1/sqrt2> v=<1/2,-sqrt3/2>

Duf=7/2 * 1/sqrt2 Duv=3/4 - sqrt3

How to find directional derivatives

Get the gradient and multiply by u

How to find linear approximation

L(x,y)=fx(a,b)(x-a)+fy(a,b)(y-b)+f(a,b) Plug points into original equation. get fx and fy and plug in points.

Linear approximation f(x,y)=ln(1+x+y) (0,0) compute at (0.1,-0.2)

L(x,y)=x+y -0.1

Find the domain of f(x,y)=x+y

R2

Find the domain of f(x,y)=y/x2+y2

R2 is all the pairs (x,y) where x2+y2 does not equal 0

Find domain of f(x,y)=sqrt(4-x2-y2)

R2 such that 4-x2-y2>0 x2+y2<4

Partial derivative of f(x,y)=e^(x2+y2)

fx=(e^y2)2xe^x2 fy=2ye^y2 ex^2

Find partial derivative f(x,y)=(y2+1)e^x

fx=(y2+1)e^x fy=2ye^x

Partial derivative of f(x,y)=cos(xy)

fx=-ysinxy fy=-xsinxy fxx=-y^2cosxy fyy=-x^2cosxy fyx=-sinxy-xycosxy

Partial derivative f(x,y)=3x4y-2xy+5xy3

fx=12x3y-2y+5y3 fy=3x4-2x+15xy2 fxx=36x2y fyy=30xy fyx=12x3-2+15y2

Find partial derivatives of f(x,y)=x^2 y

fx=2xy fy=x2 fxx=2y fyy=0 fxy=2x fyx=2x

Partial derivative f(x,y)=e^(x+y)

fx=e^y e^x fy+e^x e^y fxx=e^y e^x fyy=e^x e^y fxy=e^x e^y

Partial derivative of f(x,y)= xe^y

fx=e^y fy=xe^y fxy=e^y

Partial derivative f(x,y)=e^(x2+y2)

fx=ey^2 2xe^x2 fy=2yey^2 e^x2

Find partial derivatives of f(x,y)=xy

fx=y fy=x fxx=0 fyy=0 fxy=1 fyx=1

Partial derivative of f(x,y)=sin(xy)

fx=ycosxy fy=xcosxy fxx=-y2sinxy fyy=-x2sinxy fxy=cosxy-xysinxy

Find partial derivatives of f(x,y)=e^(xy)

fx=ye^xy fy=xe^xy fxx=y^2 e^xy hyy=x^2 e^xy fxy= e^(xy) +xye^xy fyx=e^(xy)+xye^xy

How to find tangent plane equation

get fx and fy plug in the points, then add the last number to the end of the equation z=fx(a,b)(x-a)+fy(x,b)(y-b)+f(a,b)

How to find gradient

get fx and fy then plug in the P. then <>

How to find critical points

get fx and fy. set fx=0 and fy=0 to get points. get fxx and fyy and fxy D=fxx*fyy -fxy2 compare D and fxx to 0

Critical Points D=0

inconclusive

lim (x,y)-->(1,-1) (x2+xy/x+y)

limX=1

Critical Points D>0 fxx<0

local maximum

Critical Points: D>0 fxx>0

point of local minimum

Critical Points D<0

saddle point

Find directional derivative f(x,y)=10+x2+y2 u=<sqrt3/(2),1/2> P(1,0)

sqrt3

Critical points of f(x,y)=xy(x-2)(y+3)

y=0, y=-3, x=1

Tangent plane of z=32-3x2-4y2 (2,1,16)

z=-12x-8y+48

Find an equation of the tangent plane z=4+x3-y2 at (1,1,4)

z=3x-2y+3


संबंधित स्टडी सेट्स

Chapt. 31, 32, 33 Immune System (Prep U)

View Set

Commonlit: The Open Boat Assessment

View Set

Music Appreciation Study Questions

View Set