33 trig identities
tan(-u) = [blank] u
- tan (even/odd)
cot(-u) = [blank] u
-cot (even/odd)
csc(-u)= = [blank] u
-csc (even/odd)
sin(-u) = [blank] u
-sin (even/odd)
tan^2x+ [blank] = sec^2x
1
sin2u=
2cosusinu
Identity derived from a triangle
Pythagorean Identity
sec u = 1 / [blank] u
cos
[blank] u = sin( pi/2 - u)
cos (cofunctions)
cos(-u) = [blank] u
cos (even/odd)
cot x = [blank] u / [blank] u
cos / sin
the only even functions
cos and sec
cos2u=
cos^2u-sin^2u
sin^2x+ [blank] x=1
cos^2x
cos(u-v)=
cosucosv+sinusinv
cos(u+v)=
cosucosv-sinusinv
tan u = 1 / [blank] u
cot
[blank] u = tan( pi/2 - u)
cot (cofunctions)
sin u = 1 / [blank] u
csc
[blank] u = sec( pi/2 - u)
csc (cofunctions)
1+ cot^2x = [blank] u
csc^2x
if u = u, use the
double angle formula
cos u = 1 / [blank] u
sec
[blank] u = csc( pi/2 - u)
sec (cofunctions)
sec(-u) = [blank] u
sec (even/odd)
csc u = 1 / [blank] u
sin
[blank] u = cos ( pi/2 - u)
sin (cofunctions)
tan x = [blank] u / [blank] u
sin / cos
sin(u+v)=
sinucosv+cosusinv
sin(u-v)=
sinucosv-cosusinv
cot u = 1 / [blank] u
tan
[blank] u = cot( pi/2 - u)
tan (cofunctions)
tan(u+v)=
tanu+tanv/1-tanutanv
tan(u-v)
tanu-tanv/1+tanutanv