BIO-CH: 1-3
Dead things
- Astronomy - Geology - Physics - Chemistry
Blue Green Alge
Cyanobacteria- some of the earth's oldest bacteria
Testing a Hypothesis
A valid hypothesis must be testable. It should also be falsifiable, meaning that experimental results can disprove it. Importantly, science does not claim to "prove" anything because scientific understandings are always subject to modification with further information. This step—openness to disproving ideas—is what distinguishes sciences from non-sciences. The presence of the supernatural, for instance, is neither testable nor falsifiable. To test a hypothesis, a researcher will conduct one or more experiments designed to eliminate one or more of the hypotheses. Each experiment will have one or more variables and one or more controls.
Properties of Life
All living organisms share several key characteristics or functions: order, sensitivity or response to the environment, reproduction, adaptation, growth and development, regulation, homeostasis, energy processing, and evolution. When viewed together, these nine characteristics serve to define life.
Regulation
Even the smallest organisms are complex and require multiple regulatory mechanisms to coordinate internal functions, respond to stimuli, and cope with environmental stresses. Two examples of internal functions regulated in an organism are nutrient transport and blood flow. Organs (groups of tissues working together) perform specific functions, such as carrying oxygen throughout the body, removing wastes, delivering nutrients to every cell, and cooling the body.
Carl Woese and the Phylogenetic Tree
In the past, biologists grouped living organisms into five kingdoms: animals, plants, fungi, protists, and bacteria. They based the organizational scheme mainly on physical features, as opposed to physiology, biochemistry, or molecular biology, all of which modern systematics use. American microbiologist Carl Woese's pioneering work in the early 1970s has shown, however, that life on Earth has evolved along three lineages, now called domains—Bacteria, Archaea, and Eukarya. The first two are prokaryotic cells with microbes that lack membrane-enclosed nuclei and organelles. The third domain contains the eukaryotes and includes unicellular microorganisms (protists), together with the three remaining kingdoms (fungi, plants, and animals). Woese defined Archaea as a new domain, and this resulted in a new taxonomic tree (Figure 1.17). Many organisms belonging to the Archaea domain live under extreme conditions and are called extremophiles. To construct his tree, Woese used genetic relationships rather than similarities based on morphology (shape). Woese constructed his tree from universally distributed comparative gene sequencing that are present in every organism, and conserved (meaning that these genes have remained essentially unchanged throughout evolution). Woese's approach was revolutionary because comparing physical features are insufficient to differentiate between the prokaryotes that appear fairly similar in spite of their tremendous biochemical diversity and genetic variability (Figure 1.18). Comparing homologous DNA and RNA sequences provided Woese with a sensitive device that revealed the extensive variability of prokaryotes, and which justified separating the prokaryotes into two domains: bacteria and archaea.
Hypothesis
Is a suggested explanation for an event, which one can test.
Theory
Is a tested and confirmed explanation for observations or phenomena.
Levels of Organization of Living Things
Living things are highly organized and structured, following a hierarchy that we can examine on a scale from small to large. The atom is the smallest and most fundamental unit of matter. It consists of a nucleus surrounded by electrons. Atoms form molecules. A molecule is a chemical structure consisting of at least two atoms held together by one or more chemical bonds. Many molecules that are biologically important are macromolecules, large molecules that are typically formed by polymerization (a polymer is a large molecule that is made by combining smaller units called monomers, which are simpler than macromolecules). An example of a macromolecule is deoxyribonucleic acid (DNA) (Figure 1.15), which contains the instructions for the structure and functioning of all living organisms.
Scientific Reasoning
One thing is common to all forms of science: an ultimate goal "to know." Curiosity and inquiry are the driving forces for the development of science. Scientists seek to understand the world and the way it operates. To do this, they use two methods of logical thinking: inductive reasoning and deductive reasoning.
A toad represents a highly organized structure consisting of cells, tissues, organs, and organ systems.
Organisms are highly organized, coordinated structures that consist of one or more cells. Even very simple, single-celled organisms are remarkably complex: inside each cell, atoms comprise molecules. These in turn comprise cell organelles and other cellular inclusions. In multicellular organisms (Figure 1.10), similar cells form tissues. Tissues, in turn, collaborate to create organs (body structures with a distinct function). Organs work together to form organ systems.
Natural Sciences
Science includes such diverse fields as astronomy, biology, computer sciences, geology, logic, physics, chemistry, and mathematics (Figure 1.4). However, scientists consider those fields of science related to the physical world and its phenomena and processes natural sciences. Thus, a museum of natural sciences might contain any of the items listed above.
Two Types of Reasoning
Scientists use two types of reasoning, inductive and deductive reasoning, to advance scientific knowledge. As is the case in this example, the conclusion from inductive reasoning can often become the premise for deductive reasoning. Decide if each of the following is an example of inductive or deductive reasoning. 1. All flying birds and insects have wings. Birds and insects flap their wings as they move through the air. - Therefore, wings enable flight. 2. Insects generally survive mild winters better than harsh ones. - Therefore, insect pests will become more problematic if global temperatures increase. 3. Chromosomes, the carriers of DNA, are distributed evenly between the daughter cells during cell division. - Therefore, each daughter cell will have the same chromosome set as the mother cell. 4. Animals as diverse as humans, insects, and wolves all exhibit social behavior. - Therefore, social behavior must have an evolutionary advantage. The scientific method may seem too rigid and structured. It is important to keep in mind that, although scientists often follow this sequence, there is flexibility. Sometimes an experiment leads to conclusions that favor a change in approach. Often, an experiment brings entirely new scientific questions to the puzzle. Many times, science does not operate in a linear fashion. Instead, scientists continually draw inferences and make generalizations, finding patterns as their research proceeds. Scientific reasoning is more complex than the scientific method alone suggests. Notice, too, that we can apply the scientific method to solving problems that aren't necessarily scientific in nature.
Sensitivity or Response to Stimuli
The leaves of this sensitive plant (Mimosa pudica) will instantly droop and fold when touched. After a few minutes, the plant returns to normal. (credit: Alex Lomas) Organisms respond to diverse stimuli. For example, plants can bend toward a source of light, climb on fences and walls, or respond to touch (Figure 1.11). Even tiny bacteria can move toward or away from chemicals (a process called chemotaxis) or light (phototaxis). Movement toward a stimulus is a positive response, while movement away from a stimulus is a negative response.
Two Types of Science: Basic Science and Applied Science
The scientific community has been debating for the last few decades about the value of different types of science. Is it valuable to pursue science for the sake of simply gaining knowledge, or does scientific knowledge only have worth if we can apply it to solving a specific problem or to bettering our lives? This question focuses on the differences between two types of science: basic science and applied science.
The Scientific Method
The scientific method is a method of research with defined steps that include experiments and careful observation. The most important aspect of TSM: Testing the hypothesis by means of a repeatable experiments.
zoology
study of animals
molecular biology
study of biological processes and their regulation at the molecular level, including interactions among molecules such as DNA, RNA, and proteins
paleontology
study of life's history by means of fossils
botany
study of plants
neurobiology
study of the biology of the nervous system
biochemistry
study of the chemistry of biological organisms
microbiology
study of the structure and function of microorganisms
Social Sciences (human Behavior)
study society and human behavior are more likely to use qualitative assessments to drive investigations and findings.
hypothesis
suggested explanation for an observation, which one can test
Watch this video (http://openstaxcollege.org/l/rotating_DNA)
that animates the three-dimensional structure of the DNA molecule in Figure 1.15.
biology
the study of living organisms and their interactions with one another and their environments
Natural Sciences: "Hard Science"
they rely on the use of quantitative data.
plagiarism
using other people's work or ideas without proper citation, creating the false impression that those are the author's original ideas
Some cells contain aggregates of macromolecules surrounded by membranes.
We call these organelles. Organelles are small structures that exist within cells. Examples of organelles include mitochondria and chloroplasts, which carry out indispensable functions: mitochondria produce energy to power the cell, while chloroplasts enable green plants to utilize the energy in sunlight to make sugars. All living things are made of cells. The cell itself is the smallest fundamental unit of structure and function in living organisms. (This requirement is why scientists do not consider viruses living: they are not made of cells. To make new viruses, they have to invade and hijack the reproductive mechanism of a living cell. Only then can they obtain the materials they need to reproduce.) Some organisms consist of a single cell and others are multicellular. Scientists classify cells as prokaryotic or eukaryotic. Prokaryotes are single-celled or colonial organisms that do not have membrane-bound nuclei. In contrast, the cells of eukaryotes do have membrane-bound organelles and a membrane-bound nucleus.
The Process of Science
We can define science (from the Latin scientia, meaning "knowledge") as knowledge that covers general truths or the operation of general laws, especially when acquired and tested by the scientific method. It becomes clear from this definition that applying scientific method plays a major role in science.
basic science
science that seeks to expand knowledge and understanding regardless of the short-term application of that knowledge
peer-reviewed manuscript
scientific paper that a scientist's colleagues review who are experts in the field of study
discussion
section of a scientific paper in which the author interprets experimental results, describes how variables may be related, and attempts to explain the phenomenon in question
results
section of a scientific paper in which the author narrates the experimental findings and presents relevant figures, pictures, diagrams, graphs, and tables, without any further interpretation
materials and methods
section of a scientific paper that includes a complete description of the substances, methods, and techniques that the researchers used to gather data
conclusion
section of a scientific paper that summarizes the importance of the experimental findings
community
set of populations inhabiting a particular area
prokaryote
single-celled organism that lacks organelles and does not have nuclei surrounded by a nuclear membrane
organelle
small structures that exist within cells and carry out cellular functions
atom
smallest and most fundamental unit of matter
cell
smallest fundamental unit of structure and function in living things
The scientific process
typically starts with an observation (often a problem to solve) that leads to a question. Let's think about a simple problem that starts with an observation and apply the scientific method to solve the problem. One Monday morning, a student arrives at class and quickly discovers that the classroom is too warm. That is an observation that also describes a problem: the classroom is too warm. The student then asks a question: "Why is the classroom so warm?"
The Human Genome Project
was a 13-year collaborative effort among researchers working in several different science fields. Researchers completed the project, which sequenced the entire human genome, in 2003. (credit: the U.S. Department of Energy Genome Programs (http://genomics.energy.gov (http://openstax.org/l/ genomics_gov) ) While scientists usually carefully plan research efforts in both basic science and applied science, note that some discoveries are made by serendipity, that is, by means of a fortunate accident or a lucky surprise. Scottish biologist Alexander Fleming discovered penicillin when he accidentally left a petri dish of Staphylococcus bacteria open. An unwanted mold grew on the dish, killing the bacteria. Fleming's curiosity to investigate the reason behind the bacterial death, followed by his experiments, led to the discovery of the antibiotic penicillin, which is produced by the fungus Penicillium. Even in the highly organized world of science, luck—when combined with an observant, curious mind—can lead to unexpected breakthroughs.
biosphere
collection of all the ecosystems on Earth
descriptive science
(also, discovery science) form of science that aims to observe, explore, and investigate
Living things
- Biology - Physical Sciences
The Scientific Method
Biologists study the living world by posing questions about it and seeking science-based responses. Known as scientific method, this approach is common to other sciences as well. The scientific method was used even in ancient times, but England's Sir Francis Bacon (1561-1626) first documented it (Figure 1.5). He set up inductive methods for scientific inquiry. The scientific method is not used only by biologists; researchers from almost all fields of study can apply it as a logical, rational problem-solving method.
CHAPTER SUMMARY 1.2 Themes and Concepts of Biology
Biology is the science of life. All living organisms share several key properties such as order, sensitivity or response to stimuli, reproduction, growth and development, regulation, homeostasis, and energy processing. Living things are highly organized parts of a hierarchy that includes atoms, molecules, organelles, cells, tissues, organs, and organ systems. In turn, biologists group organisms as populations, communities, ecosystems, and the biosphere. The great diversity of life today evolved from less-diverse ancestral organisms over billions of years. We can use a phylogenetic tree to show evolutionary relationships among organisms. Biology is very broad and includes many branches and subdisciplines. Examples include molecular biology, microbiology, neurobiology, zoology, and botany, among others. 1. Figure 1.6 In the example below, the scientific method is used to solve an everyday problem. Order the scientific method steps (numbered items) with the process of solving the everyday problem (lettered items). Based on the results of the experiment, is the hypothesis correct? If it is incorrect, propose some alternative hypotheses. Observation Question Hypothesis (answer) Prediction Experiment Result There is something wrong with the electrical outlet. If something is wrong with the outlet, my coffeemaker also won't work when plugged into it. My toaster doesn't toast my bread. I plug my coffee maker into the outlet. My coffeemaker works. Why doesn't my toaster work? 2. Figure 1.7 Decide if each of the following is an example of inductive or deductive reasoning. All flying birds and insects have wings. Birds and insects flap their wings as they move through the air. Therefore, wings enable flight. 2. Insects generally survive mild winters better than harsh ones. Therefore, insect pests will become more problematic if global temperatures increase. 3. Chromosomes, the carriers of DNA, separate into daughter cells during cell division. Therefore, each daughter cell will have the same chromosome set as the mother cell. 4. Animals as diverse as humans, insects, and wolves all exhibit social behavior. Therefore, social behavior must have an evolutionary advantage. 3. Figure 1.16 Which of the following statements is false? a. Tissues exist within organs which exist within organ systems. b. Communities exist within populations which exist within ecosystems. c. Organelles exist within cells which exist within tissues. d. Communities exist within ecosystems which exist in the biosphere.
CHAPTER SUMMARY 1.1 The Science of Biology
Biology is the science that studies living organisms and their interactions with one another and theirenvironments. Science attempts to describe and understand the nature of the universe in whole or in part by rational means. Science has many fields. Those fields related to the physical world and its phenomena are natural sciences. Science can be basic or applied. The main goal of basic science is to expand knowledge without any expectation of short-term practical application of that knowledge. The primary goal of applied research, however, is to solve practical problems. Science uses two types of logical reasoning. Inductive reasoning uses particular results to produce general scientific principles. Deductive reasoning is a form of logical thinking that predicts results by applying general principles. The common thread throughout scientific research is using the scientific method, a step-based process that consists of making observations, defining a problem, posing hypotheses, testing these hypotheses, and drawing one or more conclusions. The testing uses proper controls. Scientists present their results in peer-reviewed scientific papers published in scientific journals. A scientific research paper consists of several well-defined sections: introduction, materials and methods, results, and, finally, a concluding discussion. Review papers summarize the conducted research in a particular field over a period of time.
1.2 | Themes and Concepts of Biology
By the end of this section, you will be able to do the following: • Identify and describe the properties of life• Describe the levels of organization among living things• Recognize and interpret a phylogenetic tree • List examples of different subdisciplines in biology
Energy Processing
Figure 1.14 The California condor (Gymnogyps californianus) uses chemical energy derived from food to power flight. California condors are an endangered species. This bird has a wing tag that helps biologists identify the individual. (credit: Pacific Southwest Region U.S. Fish and Wildlife Service) All organisms use a source of energy for their metabolic activities. Some organisms capture energy from the sun and convert it into chemical energy in food. Others use chemical energy in molecules they take in as food (Figure 1.14).
Biologists collectively call all the individuals of a species living within a specific area a population
For example, a forest may include many pine trees, which represent the population of pine trees in this forest. Different populations may live in the same specific area. For example, the forest with the pine trees includes populations of flowering plants, insects, and microbial populations. A community is the sum of populations inhabiting a particular area. For instance, all of the trees, flowers, insects, and other populations in a forest form the forest's community. The forest itself is an ecosystem. An ecosystem consists of all the living things in a particular area together with the abiotic, nonliving parts of that environment such as nitrogen in the soil or rain water. At the highest level of organization (Figure 1.16), the biosphere is the collection of all ecosystems, and it represents the zones of life on Earth. It includes land, water, and even the atmosphere to a certain extent.
Forensic Scientist
Forensic science is the application of science to answer questions related to the law. Biologists as well as chemists and biochemists can be forensic scientists. Forensic scientists provide scientific evidence for use in courts, and their job involves examining trace materials associated with crimes. Interest in forensic science has increased in the last few years, possibly because of popular television shows that feature forensic scientists on the job. Also, developing molecular techniques and establishing DNA databases have expanded the types of work that forensic scientists can do. Their job activities are primarily related to crimes against people such as murder, rape, and assault. Their work involves analyzing samples such as hair, blood, and other body fluids and also processing DNA (Figure 1.19) found in many different environments and materials. Forensic scientists also analyze other biological evidence left at crime scenes, such as insect larvae or pollen grains. Students who want to pursue careers in forensic science will most likely have to take chemistry and biology courses as well as some intensive math courses.
The scientific method consists of a series of well-defined steps.
If a hypothesis is not supported by experimental data, one can propose a new hypothesis. In the example below, the scientific method is used to solve an everyday problem. Order the scientific method steps (numbered items) with the process of solving the everyday problem (lettered items). Based on the results of the experiment, is the hypothesis correct? If it is incorrect, propose some alternative hypotheses. 1. Observation 2. Question 3. Hypothesis (answer) 4. Prediction 5. Experiment 6. Result a. There is something wrong with the electrical outlet. b. If something is wrong with the outlet, my coffeemaker also won't work when plugged into it. c. My toaster doesn't toast my bread. d. I plug my coffee maker into the outlet. e. My coffeemaker works. f. Why doesn't my toaster work?
Growth and Development
Organisms grow and develop as a result of genes providing specific instructions that will direct cellular growth and development. This ensures that a species' young (Figure 1.12) will grow up to exhibit many of the same characteristics as its parents.
Homeostasis
Polar bears (Ursus maritimus) and other mammals living in ice-covered regions maintain their body temperature by generating heat and reducing heat loss through thick fur and a dense layer of fat under their skin. (credit: "longhorndave"/Flickr) In order to function properly, cells require appropriate conditions such as proper temperature, pH, and appropriate concentration of diverse chemicals. These conditions may, however, change from one moment to the next. Organisms are able to maintain internal conditions within a narrow range almost constantly, despite environmental changes, through homeostasis (literally, "steady state"). For example, an organism needs to regulate body temperature through the thermoregulation process. Organisms that live in cold climates, such as the polar bear (Figure 1.13), have body structures that help them withstand low temperatures and conserve body heat. Structures that aid in this type of insulation include fur, feathers, blubber, and fat. In hot climates, organisms have methods (such as perspiration in humans or panting in dogs) that help them to shed excess body heat.
Proposing a Hypothesis
Recall that a hypothesis is a suggested explanation that one can test. To solve a problem, one can propose several hypotheses. For example, one hypothesis might be, "The classroom is warm because no one turned on the air conditioning." However, there could be other responses to the question, and therefore one may propose other hypotheses. A second hypothesis might be, "The classroom is warm because there is a power failure, and so the air conditioning doesn't work." Once one has selected a hypothesis, the student can make a prediction. A prediction is similar to a hypothesis but it typically has the format "If . . . then . . . ." For example, the prediction for the first hypothesis might be, "If the student turns on the air conditioning, then the classroom will no longer be too warm."
Reproduction
Single-celled organisms reproduce by first duplicating their DNA, and then dividing it equally as the cell prepares to divide to form two new cells. Multicellular organisms often produce specialized reproductive germline, gamete, oocyte, and sperm cells. After fertilization (the fusion of an oocyte and a sperm cell), a new individual develops. When reproduction occurs, DNA containing genes are passed along to an organism's offspring. These genes ensure that the offspring will belong to the same species and will have similar characteristics, such as size and shape.
What is Biology?
The Study of living organisms and their interactions with one another & their environments. For example, recent news topics include Escherichia coli (Figure 1.3) outbreaks in spinach and Salmonella contamination in peanut butter. Other subjects include efforts toward finding a cure for AIDS, Alzheimer's disease, and cancer. On a global scale, many researchers are committed to finding ways to protect the planet, solve environmental issues, and reduce the effects of climate change. All of these diverse endeavors are related to different facets of the discipline of biology.
The Diversity of Life
The fact that biology, as a science, has such a broad scope has to do with the tremendous diversity of life on earth. The source of this diversity is evolution, the process of gradual change during which new species arise from older species. Evolutionary biologists study the evolution of living things in everything from the microscopic world to ecosystems. A phylogenetic tree (Figure 1.17) can summarize the evolution of various life forms on Earth. It is a diagram This OpenStax book is available for free at http://cnx.org/content/col24361/1.8 Chapter 1 | The Study of Life 25 showing the evolutionary relationships among biological species based on similarities and differences in genetic or physical traits or both. Nodes and branches comprise a phylogenetic tree. The internal nodes represent ancestors and are points in evolution when, based on scientific evidence, researchers believe an ancestor has diverged to form two new species. The length of each branch is proportional to the time elapsed since the split.
Branches of Biological Study
The scope of biology is broad and therefore contains many branches and subdisciplines. Biologists may pursue one of those subdisciplines and work in a more focused field. For instance, molecular biology and biochemistry study biological processes at the molecular and chemical level, including interactions among molecules such as DNA, RNA, and proteins, as well as the way they are regulated. Microbiology, the study of microorganisms, is the study of the structure and function of single-celled organisms. It is quite a broad branch itself, and depending on the subject of study, there are also microbial physiologists, ecologists, and geneticists, among others.
Biology is the science that studies life, but what exactly is life?
This may sound like a silly question with an obvious response, but it is not always easy to define life. For example, a branch of biology called virology studies viruses, which exhibit some of the characteristics of living entities but lack others. Although viruses can attack living organisms, cause diseases, and even reproduce, they do not meet the criteria that biologists use to define life. Consequently, virologists are not biologists, strictly speaking. Similarly, some biologists study the early molecular evolution that gave rise to life. Since the events that preceded life are not biological events, these scientists are also excluded from biology in the strict sense of the term. From its earliest beginnings, biology has wrestled with three questions: What are the shared properties that make something "alive"? Once we know something is alive, how do we find meaningful levels of organization in its structure? Finally, when faced with the remarkable diversity of life, how do we organize the different kinds of organisms so that we can better understand them? As scientists discover new organisms every day, biologists continue to seek answers to these and other questions.
Reporting Scientific Work
Whether scientific research is basic science or applied science, scientists must share their findings in order for other researchers to expand and build upon their discoveries. Collaboration with other scientists—when planning, conducting, and analyzing results—are all important for scientific research. For this reason, important aspects of a scientist's work are communicating with peers and disseminating results to peers. Scientists can share results by presenting them at a scientific meeting or conference, but this approach can reach only the select few who are present. Instead, most scientists present their results in peer-reviewed manuscripts that are published in scientific journals.
homeostasis
ability of an organism to maintain constant internal conditions
falsifiable
able to be disproven by experimental results
population
all of the individuals of a species living within a specific area
ecosystem
all the living things in a particular area together with the abiotic, nonliving parts of that environment
Stromatolites
along the shoes of lake Thetis in Western Australia are ancient structures formed by layering Cyanobacteria in shallow waters.
Paleontology
another branch of biology, uses fossils to study life's history (Figure 1.20). Zoology and botany are the study of animals and plants, respectively. Biologists can also specialize as biotechnologists, ecologists, or physiologists, to name just a few areas. This is just a small sample of the many fields that biologists can pursue. Biology is the culmination of the achievements of the natural sciences from their inception to today. Excitingly, it is the cradle of emerging sciences, such as the biology of brain activity, genetic engineering of custom organisms, and the biology of evolution that uses the laboratory tools of molecular biology to retrace the earliest stages of life on Earth. A scan of news headlines—whether reporting on immunizations, a newly discovered species, sports doping, or a genetically-modified food—demonstrates the way biology is active in and important to our everyday world.
Reporting Scientific Work: Peer-reviewed manuscripts
are scientific papers that a scientist's colleagues or peers review. These colleagues are qualified individuals, often experts in the same research area, who judge whether or not the scientist's work is suitable for publication. The process of peer review helps to ensure that the research in a scientific paper or grant proposal is original, significant, logical, and thorough. Grant proposals, which are requests for research funding, are also subject to peer review. Scientists publish their work so other scientists can reproduce their experiments under similar or different conditions to expand on the findings. The experimental results must be consistent with the findings of other scientists. A scientific paper is very different from creative writing. Although creativity is required to design experiments, there are fixed guidelines when it comes to presenting scientific results. First, scientific writing must be brief, concise, and accurate. A scientific paper needs to be succinct but detailed enough to allow peers to reproduce the experiments.
Living+Dead things
biophysics and biochemistry build on both life and physical sciences and are interdisciplinary.
molecule
chemical structure consisting of at least two atoms held together by one or more chemical bonds
organ
collection of related tissues grouped together performing a common function
The control group
contains every feature of the experimental group except it is not given the manipulation that the researcher hypothesizes. Therefore, if the experimental group's results differ from the control group, the difference must be due to the hypothesized manipulation, rather than some outside factor. Look for the variables and controls in the examples that follow. To test the first hypothesis, the student would find out if the air conditioning is on. If the air conditioning is turned on but does not work, there should be another reason, and the student should reject this hypothesis. To test the second hypothesis, the student could check if the lights in the classroom are functional. If so, there is no power failure and the student should reject this hypothesis. The students should test each hypothesis by carrying out appropriate experiments. Be aware that rejecting one hypothesis does not determine whether or not one can accept the other hypotheses. It simply eliminates one hypothesis that is not valid (Figure 1.6). Using the scientific method, the student rejects the hypotheses that are inconsistent with experimental data.
phylogenetic tree
diagram showing the evolutionary relationships among various biological species based on similarities and differences in genetic or physical traits or both; in essence, a hypothesis concerning evolutionary connections
"warm classroom"
example is based on observational results, other hypotheses and experiments might have clearer controls. For instance, a student might attend class on Monday and realize she had difficulty concentrating on the lecture. One observation to explain this occurrence might be, "When I eat breakfast before class, I am better able to pay attention." The student could then design an experiment with a control to test this hypothesis. In hypothesis-based science, researchers predict specific results from a general premise. We call this type of reasoning deductive reasoning: deduction proceeds from the general to the particular. However, the reverse of the process is also possible: sometimes, scientists reach a general conclusion from a number of specific observations. We call this type of reasoning inductive reasoning, and it proceeds from the particular to the general. Researchers often use inductive and deductive reasoning in tandem to advance scientific knowledge
natural science
field of science that is related to the physical world and its phenomena and processes
life science
field of science, such as biology, that studies living things
physical science
field of science, such as geology, astronomy, physics, and chemistry, that studies nonliving matter
deductive reasoning
form of logical thinking that uses a general inclusive statement to forecast specific results
inductive reasoning
form of logical thinking that uses related observations to arrive at a general conclusion
applied science
form of science that aims to solve real-world problems
hypothesis-based science
form of science that begins with a specific question and potential testable answers
serendipity
fortunate accident or a lucky surprise
Watch this video (http://openstaxcollege.org/l/movement_plants) to see how plants respond to a stimulus—
from opening to light, to wrapping a tendril around a branch, to capturing prey.
tissue
group of similar cells carrying out related functions
The materials and methods section
includes a complete and accurate description of the substances the researchers use, and the method and techniques they use to gather data. The description should be thorough enough to allow another researcher to repeat the experiment and obtain similar results, but it does not have to be verbose. This section will also include information on how the researchers made measurements and the types of calculations and statistical analyses they used to examine raw data. Although the materials and methods section gives an accurate description of the experiments, it does not discuss them. Some journals require a results section followed by a discussion section, but it is more common to combine both. If the journal does not allow combining both sections, the results section simply narrates the findings without any further interpretation. The researchers present results with tables or graphs, but they do not present duplicate information. In the discussion section, the researchers will interpret the results, describe how variables may be related, and attempt to explain the observations. It is indispensable to conduct an extensive literature search to put the results in the context of previously published scientific research. Therefore, researchers include proper citations in this section as well. Finally, the conclusion section summarizes the importance of the experimental findings. While the scientific paper almost certainly answers one or more scientific questions that the researchers stated, any good research should lead to more questions. Therefore, a well-done scientific paper allows the researchers and others to continue and expand on the findings. Review articles do not follow the IMRAD format because they do not present original scientific findings, or primary literature. Instead, they summarize and comment on findings that were published as primary literature and typically include extensive reference sections.
organism
individual living entity
Deductive reasoning
is a form of logical thinking that uses a general principle or law to forecast specific results. From those general principles, a scientist can extrapolate and predict the specific results that would be valid as long as the general principles are valid. Studies in climate change can illustrate this type of reasoning. For example, scientists may predict that if the climate becomes warmer in a particular region, then the distribution of plants and animals should change. Both types of logical thinking are related to the two main pathways of scientific study: descriptive science and hypothesis-based science.
Inductive reasoning
is a form of logical thinking that uses related observations to arrive at a general conclusion. This type of reasoning is common in descriptive science. A life scientist such as a biologist makes observations and records them. These data can be qualitative or quantitative, and one can supplement the raw data with drawings, pictures, photos, or videos. From many observations, the scientist can infer conclusions (inductions) based on evidence. Inductive reasoning involves formulating generalizations inferred from careful observation and analyzing a large amount of data. Brain studies provide an example. In this type of research, scientists observe many live brains while people are engaged in a specific activity, such as viewing images of food. The scientist then predicts the part of the brain that "lights up" during this activity to be the part controlling the response to the selected stimulus, in this case, images of food. Excess absorption of radioactive sugar derivatives by active areas of the brain causes the various areas to "light up". Scientists use a scanner to observe the resultant increase in radioactivity. Then, researchers can stimulate that part of the brain to see if similar responses result. Deductive reasoning or deduction is the type of logic used in hypothesis-based science. In deductive reason, the pattern of thinking moves in the opposite direction as compared to inductive reasoning.
A variable
is any part of the experiment that can vary or change during the experiment.
science
knowledge that covers general truths or the operation of general laws, especially when acquired and tested by the scientific method
macromolecule
large molecule, typically formed by the joining of smaller molecules
organ system
level of organization that consists of functionally related interacting organs
scientific method
method of research with defined steps that include observation, formulation of a hypothesis, testing, and confirming or falsifying the hypothesis
abstract
opening section of a scientific paper that summarizes the research and conclusions
introduction
opening section of a scientific paper, which provides background information about what was known in the field prior to the research reported in the paper
Basic science
or "pure" science seeks to expand knowledge regardless of the short-term application of that knowledge. It is not focused on developing a product or a service of immediate public or commercial value. The immediate goal of basic science is knowledge for knowledge's sake, although this does not mean that, in the end, it may not result in a practical application.
applied science
or "technology," aims to use science to solve real-world problems, making it possible, for example, to improve a crop yield, find a cure for a particular disease, or save animals threatened by a natural disaster (Figure 1.8). In applied science, the problem is usually defined for the researcher.
eukaryote
organism with cells that have nuclei and membrane-bound organelles
review article
paper that summarizes and comments on findings that were published as primary literature
control
part of an experiment that does not change during the experiment
variable
part of an experiment that the experimenter can vary or change
evolution
process of gradual change during which new species arise from older species and some species become extinct
theory
tested and confirmed explanation for observations or phenomena
In larger organisms, cells combine to make tissues
which are groups of similar cells carrying out similar or related functions. Organs are collections of tissues grouped together performing a common function. Organs 24 Chapter 1 | The Study of Life are present not only in animals but also in plants. An organ system is a higher level of organization that consists of functionally related organs. Mammals have many organ systems. For instance, the circulatory system transports blood through the body and to and from the lungs. It includes organs such as the heart and blood vessels. Organisms are individual living entities. For example, each tree in a forest is an organism. Single-celled prokaryotes and single-celled eukaryotes are also organisms, which biologists typically call microorganisms.
Descriptive (or discovery) science
which is usually inductive, aims to observe, explore, and discover, while hypothesis-based science, which is usually deductive, begins with a specific question or problem and a potential answer or solution that one can test. The boundary between these two forms of study is often blurred, and most scientific endeavors combine both approaches. The fuzzy boundary becomes apparent when thinking about how easily observation can lead to specific questions. For example, a gentleman in the 1940s observed that the burr seeds that stuck to his clothes and his dog's fur had a tiny hook structure. On closer inspection, he discovered that the burrs' gripping device was more reliable than a zipper. He eventually experimented to find the best material that acted similar, and produced the hook-and-loop fastener popularly known today as Velcro. Descriptive science and hypothesis-based science are in continuous dialogue.
The scientific paper consists of several specific sections
—introduction, materials and methods, results, and discussion. This structure is sometimes called the "IMRaD" format. There are usually acknowledgment and reference sections as well as an abstract (a concise summary) at the beginning of the paper. There might be additional sections depending on the type of paper and the journal where it will be published. For example, some This OpenStax book is available for free at http://cnx.org/content/col24361/1.8 Chapter 1 | The Study of Life 19 review papers require an outline. The introduction starts with brief, but broad, background information about what is known in the field. A good introduction also gives the rationale of the work. It justifies the work carried out and also briefly mentions the end of the paper, where the researcher will present the hypothesis or research question driving the research. The introduction refers to the published scientific work of others and therefore requires citations following the style of the journal. Using the work or ideas of others without proper citation is plagiarism.