Chapter 8 Multiple Choice
Which of the following statements is (are) true about enzyme-catalyzed reactions? A) The reaction is faster than the same reaction in the absence of the enzyme. B) The free energy change of the reaction is opposite from the reaction in the absence of the enzyme. C) The reaction always goes in the direction toward chemical equilibrium. D) A and B only E) A, B, and C
A) The reaction is faster than the same reaction in the absence of the enzyme.
Which of the following is considered an open system? A) an organism B) liquid in a corked bottle C) a sealed terrarium D) food cooking in a pressure cooker
A) an organism
A chemical reaction that has a positive △G is correctly described as A) endergonic. B) endothermic. C) enthalpic. D) spontaneous. E) exothermic.
A) endergonic.
The organization of organisms has become increasingly complex with time. This statement A) is consistent with the second law of thermodynamics. B) requires that due to evolution, the entropy of the universe increased. C) is based on the fact that organisms function as closed systems. D) A and B only E) A, B, and C
A) is consistent with the second law of thermodynamics.
Why is ATP an important molecule in metabolism? A) Its hydrolysis provides an input of free energy for exergonic reactions. B) It provides energy coupling between exergonic and endergonic reactions. C) Its terminal phosphate group contains a strong covalent bond that when hydrolyzed releases free energy. D) Its terminal phosphate bond has higher energy than the other two.
B) It provides energy coupling between exergonic and endergonic reactions.
For living organisms, which of the following is an important consequence of the first law of thermodynamics? A) The energy content of an organism is constant. B) The organism ultimately must obtain all of the necessary energy for life from its environment. C) The entropy of an organism decreases with time as the organism grows in complexity. D) Organisms are unable to transform energy. E) Life does not obey the first law of thermodynamics.
B) The organism ultimately must obtain all of the necessary energy for life from its environment.
Which of the following is true for all exergonic reactions? A) The products have more total energy than the reactants. B) The reaction proceeds with a net release of free energy. C) Some reactants will be converted to products. D) A net input of energy from the surroundings is required for the reactions to proceed. E) The reactions are nonspontaneous.
B) The reaction proceeds with a net release of free energy.
Which of the following statements is true concerning catabolic pathways? A) They combine molecules into more energy-rich molecules. B) They are usually coupled with anabolic pathways to which they supply energy in the form of ATP. C) They are endergonic. D) They are spontaneous and do not need enzyme catalysis. E) They build up complex molecules such as protein from simpler compounds.
B) They are usually coupled with anabolic pathways to which they supply energy in the form of ATP.
Zinc, an essential trace element for most organisms, is present in the active site of the enzyme carboxypeptidase. The zinc most likely functions as a(n) A) competitive inhibitor of the enzyme. B) noncompetitive inhibitor of the enzyme. C) allosteric activator of the enzyme. D) cofactor necessary for enzyme activity. E) coenzyme derived from a vitamin.
D) cofactor necessary for enzyme activity.
During a laboratory experiment, you discover that an enzyme-catalyzed reaction has a △G of -20 kcal/mol. If you double the amount of enzyme in the reaction, what will be the △G for the new reaction? A) -40 kcal/mol B) -20 kcal/mol C) 0 kcal/mol D) +20 kcal/mol E) +40 kcal/mol
B) -20 kcal/mol
Which of the following shows the correct changes in thermodynamic properties for a chemical reaction in which amino acids are linked to form a protein? A) +△H, +△S, +△G B) +△H, -△S, -△G C) +△H, -△S, +△G D) -△H, -△S, +△G E) -△H, +△S, +△G
C) +△H, -△S, +△G
A number of systems for pumping across membranes are powered by ATP. Such ATP-powered pumps are often called ATPases although they don't often hydrolyze ATP unless they are simultaneously transporting ions. Small increases in calcium ions in the cytosol trigger a number of different intracellular reactions, so the cells must keep the calcium concentration quite low. Muscle cells also transport calcium from the cytosol into the membranous system called the sarcoplasmic reticulum (SR). If a muscle cell cytosol has a free calcium ion concentration of 10-7 in a resting cell, while the concentration in the SR can be 10-2, then how is the ATPase acting? A) The ATP must be powering an inflow of calcium from the outside of the cell into the SR. B) ATP must be transferring Pi to the SR to enable this to occur. C) ATPase activity must be pumping calcium from the cytosol to the SR against the concentration gradient. D) The calcium ions must be diffusing back into the SR along the concentration gradient. E) The route of calcium ions must be from SR to the cytosol, to the cell's environment.
C) ATPase activity must be pumping calcium from the cytosol to the SR against the concentration gradient.
Which of the following is (are) true for anabolic pathways? A) They do not depend on enzymes. B) They are usually highly spontaneous chemical reactions. C) They consume energy to build up polymers from monomers. D) They release energy as they degrade polymers to monomers.
C) They consume energy to build up polymers from monomers
Sucrose is a disaccharide, composed of the monosaccharides glucose and fructose. The hydrolysis of sucrose by the enzyme sucrase results in A) bringing glucose and fructose together to form sucrose. B) the release of water from sucrose as the bond between glucose and fructose is broken. C) breaking the bond between glucose and fructose and forming new bonds from the atoms of water. D) production of water from the sugar as bonds are broken between the glucose monomers. E) utilization of water as a covalent bond is formed between glucose and fructose to form sucrase
C) breaking the bond between glucose and fructose and forming new bonds from the atoms of water.
Increasing the substrate concentration in an enzymatic reaction could overcome which of the following? A) denaturization of the enzyme B) allosteric inhibition C) competitive inhibition D) saturation of the enzyme activity E) insufficient cofactors
C) competitive inhibition
The mathematical expression for the change in free energy of a system is △G =△H-T△S. Which of the following is (are) correct? A) △S is the change in enthalpy, a measure of randomness. B) △H is the change in entropy, the energy available to do work. C) △G is the change in free energy. D) T is the temperature in degrees Celsius.
C) △G is the change in free energy.
Living organisms increase in complexity as they grow, resulting in a decrease in the entropy of an organism. How does this relate to the second law of thermodynamics? A) Living organisms do not obey the second law of thermodynamics, which states that entropy must increase with time. B) Life obeys the second law of thermodynamics because the decrease in entropy as the organism grows is balanced by an increase in the entropy of the universe. C) Living organisms do not follow the laws of thermodynamics. D) As a consequence of growing, organisms create more disorder in their environment than the decrease in entropy associated with their growth. E) Living organisms are able to transform energy into entropy.
D) As a consequence of growing, organisms create more disorder in their environment than the decrease in entropy associated with their growth.
Which of the following is true of enzymes? A) Enzymes may require a nonprotein cofactor or ion for catalysis to take speed up more appreciably than if the enzymes act alone. B) Enzyme function is increased if the three-dimensional structure or conformation of an enzyme is altered. C) Enzyme function is independent of physical and chemical environmental factors such as pH and temperature. D) Enzymes increase the rate of chemical reaction by lowering activation energy barriers.
D) Enzymes increase the rate of chemical reaction by lowering activation energy barriers.
Which of the following statements is a logical consequence of the second law of thermodynamics? A) If the entropy of a system increases, there must be a corresponding decrease in the entropy of the universe. B) If there is an increase in the energy of a system, there must be a corresponding decrease in the energy of the rest of the universe. C) Every energy transfer requires activation energy from the environment. D) Every chemical reaction must increase the total entropy of the universe. E) Energy can be transferred or transformed, but it cannot be created or destroyed.
D) Every chemical reaction must increase the total entropy of the universe.
When ATP releases some energy, it also releases inorganic phosphate. What purpose does this serve (if any) in the cell? A) It is released as an excretory waste. B) It can only be used to regenerate more ATP. C) It can be added to water and excreted as a liquid. D) It can be added to other molecules in order to activate them. E) It can enter the nucleus to affect gene expression.
D) It can be added to other molecules in order to activate them.
When chemical, transport, or mechanical work is done by an organism, what happens to the heat generated? A) It is used to power yet more cellular work. B) It is used to store energy as more ATP. C) It is used to generate ADP from nucleotide precursors. D) It is lost to the environment. E) It is transported to specific organs such as the brain.
D) It is lost to the environment.
Which of the following is true of metabolism in its entirety? A) Metabolism depends on a constant supply of energy from food B) Metabolism depends on an organism's adequate hydration C) Metabolism utilizes all of an organism's resources D) Metabolism is a property of organismal life E) Metabolism manages the increase of entropy in an organism
D) Metabolism is a property of organismal life
Which term most precisely describes the cellular process of breaking down large molecules into smaller ones? A) catalysis B) metabolism C) anabolism D) dehydration E) catabolism
E) Catabolism
What must be the difference (if any) between the structure of ATP and the structure of the precursor of the A nucleotide in DNA and RNA? A) The sugar molecule is different. B) The nitrogen-containing base is different. C) The number of phosphates is three instead of one. D) The number of phosphates is three instead of two. E) There is no difference.
E) There is no difference.