Data Science

Lakukan tugas rumah & ujian kamu dengan baik sekarang menggunakan Quizwiz!

Explain how a ROC curve works.

The ROC curve is a graphical representation of the contrast between true positive rates and the false positive rate at various thresholds. It's often used as a proxy for the trade-off between the sensitivity of the model (true positives) vs the fall-out or the probability it will trigger a false alarm (false positives).

What is Bayes' Theorem? How is it useful in a machine learning context?

Bayes' Theorem gives you the posterior probability of an event given what is known as prior knowledge. Mathematically, it's expressed as the true positive rate of a condition sample divided by the sum of the false positive rate of the population and the true positive rate of a condition. Say you had a 60% chance of actually having the flu after a flu test, but out of people who had the flu, the test will be false 50% of the time, and the overall population only has a 5% chance of having the flu. Would you actually have a 60% chance of having the flu after having a positive test? Bayes' Theorem says no. It says that you have a (.6 * 0.05) (True Positive Rate of a Condition Sample) / (.6*0.05)(True Positive Rate of a Condition Sample) + (.5*0.95) (False Positive Rate of a Population) = 0.0594 or 5.94% chance of getting a flu.

What's the trade-off between bias and variance?

Bias is error due to erroneous or overly simplistic assumptions in the learning algorithm you're using. This can lead to the model underfitting your data, making it hard for it to have high predictive accuracy and for you to generalize your knowledge from the training set to the test set. Variance is error due to too much complexity in the learning algorithm you're using. This leads to the algorithm being highly sensitive to high degrees of variation in your training data, which can lead your model to overfit the data. You'll be carrying too much noise from your training data for your model to be very useful for your test data. The bias-variance decomposition essentially decomposes the learning error from any algorithm by adding the bias, the variance and a bit of irreducible error due to noise in the underlying dataset. Essentially, if you make the model more complex and add more variables, you'll lose bias but gain some variance — in order to get the optimally reduced amount of error, you'll have to tradeoff bias and variance. You don't want either high bias or high variance in your model.

Explain the difference between L1 and L2 regularization.

L2 regularization tends to spread error among all the terms, while L1 is more binary/sparse, with many variables either being assigned a 1 or 0 in weighting. L1 corresponds to setting a Laplacean prior on the terms, while L2 corresponds to a Gaussian prior.

Define precision and recall.

Recall is also known as the true positive rate: the amount of positives your model claims compared to the actual number of positives there are throughout the data. Precision is also known as the positive predictive value, and it is a measure of the amount of accurate positives your model claims compared to the number of positives it actually claims. It can be easier to think of recall and precision in the context of a case where you've predicted that there were 10 apples and 5 oranges in a case of 10 apples. You'd have perfect recall (there are actually 10 apples, and you predicted there would be 10) but 66.7% precision because out of the 15 events you predicted, only 10 (the apples) are correct.

Which is more important to you- model accuracy, or model performance?

This question tests your grasp of the nuances of machine learning model performance! Machine learning interview questions often look towards the details. There are models with higher accuracy that can perform worse in predictive power — how does that make sense? Well, it has everything to do with how model accuracy is only a subset of model performance, and at that, a sometimes misleading one. For example, if you wanted to detect fraud in a massive dataset with a sample of millions, a more accurate model would most likely predict no fraud at all if only a vast minority of cases were fraud. However, this would be useless for a predictive model — a model designed to find fraud that asserted there was no fraud at all! Questions like this help you demonstrate that you understand model accuracy isn't the be-all and end-all of model performance.

How would you handle an imbalanced dataset?

An imbalanced dataset is when you have, for example, a classification test and 90% of the data is in one class. That leads to problems: an accuracy of 90% can be skewed if you have no predictive power on the other category of data! Here are a few tactics to get over the hump: 1- Collect more data to even the imbalances in the dataset. 2- Resample the dataset to correct for imbalances. 3- Try a different algorithm altogether on your dataset. What's important here is that you have a keen sense for what damage an unbalanced dataset can cause, and how to balance that.

When should you use classification over regression?

Classification produces discrete values and dataset to strict categories, while regression gives you continuous results that allow you to better distinguish differences between individual points. You would use classification over regression if you wanted your results to reflect the belongingness of data points in your dataset to certain explicit categories (ex: If you wanted to know whether a name was male or female rather than just how correlated they were with male and female names.)

What is the difference between supervised and unsupervised machine learning?

Supervised learning requires training labeled data. For example, in order to do classification (a supervised learning task), you'll need to first label the data you'll use to train the model to classify data into your labeled groups. Unsupervised learning, in contrast, does not require labeling data explicitly.

How do you ensure you're not overfitting with a model?

This is a simple restatement of a fundamental problem in machine learning: the possibility of overfitting training data and carrying the noise of that data through to the test set, thereby providing inaccurate generalizations. There are three main methods to avoid overfitting: 1- Keep the model simpler: reduce variance by taking into account fewer variables and parameters, thereby removing some of the noise in the training data. 2- Use cross-validation techniques such as k-folds cross-validation. 3- Use regularization techniques such as LASSO that penalize certain model parameters if they're likely to cause overfitting.

What's the difference between Type I and Type II error?

Type I error is a false positive, while Type II error is a false negative. Briefly stated, Type I error means claiming something has happened when it hasn't, while Type II error means that you claim nothing is happening when in fact something is. A clever way to think about this is to think of Type I error as telling a man he is pregnant, while Type II error means you tell a pregnant woman she isn't carrying a baby.


Set pelajaran terkait

ATI RN Evidence-Based Practice Assessment

View Set

Essential Elements to Form a Contract

View Set

Module 2: Electrical Measurements

View Set

Ob & Gyn 1201-1400 ចម្លើយពេញ

View Set

What is your name? 你叫什么名字?

View Set