MCC_Exam2

Lakukan tugas rumah & ujian kamu dengan baik sekarang menggunakan Quizwiz!

Which of the following regions of the genome is the least likely to be conserved over evolutionary time? (a) the upstream regulatory region of a gene that encodes the region conferring tissue specificity (b) the upstream regulatory region of a gene that binds to RNA polymerase (c) the portion of the genome that codes for proteins (d) the portion of the genome that codes for RNAs that are not translated into protein

a

A. Protein A binds to its DNA binding site [more tightly/less tightly] than protein B binds to its DNA binding site. B. Protein A is a [stronger/weaker] activator of transcription than protein B. C. Protein C is able to prevent activation by [protein A only/protein B only/both protein A and protein B].

More tightly, weaker, both protein A and protein B

Which of the following limits the use of PCR to detect and isolate genes? (a) The sequence at the beginning and end of the DNA to be amplified must be known. (b) It also produces large numbers of copies of sequences beyond the 5′ or 3′ end of the desired sequence. (c) It cannot be used to amplify cDNAs or mRNAs. (d) It will amplify only sequences present in multiple copies in the DNA sample.

a

Which of the following molecules of RNA would you predict to be the most likely to fold into a specific structure as a result of intramolecular base-pairing? (a) 5′-CCCUAAAAAAAAAAAAAAAAUUUUUUUUUUUUUUUUAGGG-3′ (b) 5′-UGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUG-3′ (c) 5′-AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3′ (d) 5′-GGAAAAGGAGAUGGGCAAGGGGAAAAGGAGAUGGGCAAGG-3′

a

Which of the following processes is not thought to contribute to diversity in the genome of human individuals? (a) exon shuffling (b) single-nucleotide polymorphisms (c) CA repeats (d) duplication and deletion of large blocks of sequence

a

Which of the following proteins are likely to act as gene activators? (a) factors X and Y (b) factors X and Z (c) factors Y and Z (d) factor X only

a

Which of the following statements about gene families is false? (a) Because gene duplication can occur when crossover events occur, genes are always duplicated onto homologous chromosomes. (b) Not all duplicated genes will become functional members of gene families. (c) Whole-genome duplication can contribute to the formation of gene families. (d) Duplicated genes can diverge in both their regulatory regions and their coding regions.

a

Combinatorial control of gene expression __________________________. (a) involves every gene using a different combination of transcriptional regulators for its proper expression. (b) involves groups of transcriptional regulators working together to determine the expression of a gene. (c) involves only the use of gene activators used together to regulate genes appropriately. (d) is seen only when genes are arranged in operons.

b

Figure Q10-64A depicts the restriction map of one segment of the human genome for four restriction nucleases W, X, Y, and Z. Figure Q10-64B depicts the restriction maps of four individual BAC clones that contain segments of human DNA from the region depicted in Figure Q10-64A. Figure Q10-64 From this information, how would you order these BAC clones, from left to right? (a) 1, 2, 3, 4 (b) 2, 1, 4, 3 (c) 3, 4, 2, 1 (d) 4, 1, 3, 2

b

How are most eukaryotic transcription regulators able to affect transcription when their binding sites are far from the promoter? (a) by binding to their binding site and sliding to the site of RNA polymerase assembly (b) by looping out the intervening DNA between their binding site and the promoter (c) by unwinding the DNA between their binding site and the promoter (d) by attracting RNA polymerase and modifying it before it can bind to the promoter

b

If you were to cut this circular piece of DNA with both XhoI and SmaI, how many fragments of DNA would you end up with? (a) 1 (b) 2 (c) 3 (d) 4

b

In eukaryotes, but not in prokaryotes, ribosomes find the start site of translation by ____________________________. (a) binding directly to a ribosome-binding site preceding the initiation codon. (b) scanning along the mRNA from the 5′ end. (c) recognizing an AUG codon as the start of translation. (d) binding an initiator tRNA.

b

Which of the following statements about gel-transfer hybridization (or Southern blotting) is false? (a) This technique involves the transfer of DNA molecules from gel onto nitrocellulose paper or nylon paper. (b) In this technique, single-stranded DNA is separated by electrophoresis. (c) A labeled DNA probe binds to the DNA by hybridization. (d) The DNA that is separated on a gel is not labeled.

b

Which of the following statements about iPS cells is false? (a) iPS cells are created by adding a combination of transcription regulators to a fibroblast. (b) iPS cells created from mouse cells can differentiate into almost any human cell type. (c) Stimulation by extracellular signal molecules causes iPS cells to differentiate. (d) During the de-differentiation process to become an iPS, the fibroblast will undergo changes to its gene expression profile.

b

Which of the following statements about mRNA half-life is false? (a) The half-life of mRNAs produced from different genes will vary more than the half-life of mRNAs produced from the same gene. (b) The half-life of most eukaryotic-cell mRNAs is >24 hours. (c) The half-life of most bacterial mRNAs is shorter than the half-life of a typical eukaryotic mRNA. (d) The 5′ and 3′ untranslated regions of an mRNA often contain specific sequences that determine the lifetime of the mRNA molecule.

b

Which of the following statements about prokaryotic mRNA molecules is false? (a) A single prokaryotic mRNA molecule can be translated into several proteins. (b) Ribosomes must bind to the 5′ cap before initiating translation. (c) mRNAs are not polyadenylated. (d) Ribosomes can start translating an mRNA molecule before transcription is complete.

b

Which of the following statements about restriction nucleases is false? (a) A reproducible set of DNA fragments will be produced every time a restriction nuclease digests a known piece of DNA. (b) Restriction nucleases recognize specific sequences on single-stranded DNA. (c) Some bacteria use restriction nucleases as protection from foreign DNA. (d) Some restriction nucleases cut in a staggered fashion, leaving short, single-stranded regions of DNA at the ends of the cut molecule.

b

Which of the following statements about retroviruses is false? (a) Retroviruses are packaged with a few molecules of reverse transcriptase in each virus particle. (b) Retroviruses use the host-genome integrase enzyme to create the provirus. (c) The production of viral RNAs can occur long after the initial infection of the host cell by the retrovirus. (d) Viral RNAs are translated by host-cell ribosomes to produce the proteins required for the production of viral particles.

b

Which of the following statements about the Ey transcriptional regulator is false? (a) Expression of Ey in cells that normally form legs in the fly will lead to the formation of an eye in the middle of the legs. (b) The Ey transcription factor must bind to the promoter of every eye- specific gene in the fly. (c) Positive feedback loops ensure that Ey expression remains switched on in the developing eye. (d) A homolog of Ey is found in vertebrates; this homolog is also used during eye development.

b

Which of the following statements about the genetic code is correct? (a) All codons specify more than one amino acid. (b) The genetic code is redundant. (c) All amino acids are specified by more than one codon. (d) All codons specify an amino acid.

b

You are studying a disease that is caused by a virus, but when you purify the virus particles and analyze them you find they contain no trace of DNA. Which of the following molecules are likely to contain the genetic information of the virus? (a) high-energy phosphate groups (b) RNA (c) lipids (d) carbohydrates

b

You cut a vector using the PciI restriction nuclease. Which of the following restriction nucleases will generate a fragment that can be ligated into this cut vector with the addition of only ligase and ATP? (a) HindIII (b) NcoI (c) MmeI (d) NspV

b

You have a bacterial strain with a mutation that removes the transcription termination signal from the Abd operon. Which of the following statements describes the most likely effect of this mutation on Abd transcription? (a) The Abd RNA will not be produced in the mutant strain. (b) The Abd RNA from the mutant strain will be longer than normal. (c) Sigma factor will not dissociate from RNA polymerase when the Abd operon is being transcribed in the mutant strain. (d) RNA polymerase will move in a backward fashion at the Abd operon in the mutant strain.

b

You have a linear piece of DNA that can be cut by the restriction nucleases HindIII and EcoRI, as diagrammed in Figure Q10-9. Figure Q10-9 If you were to cut this linear DNA with HindIII, what type of DNA fragments do you predict you will obtain? (a) three linear pieces of DNA (b) two linear pieces of DNA, only one of which can be cut by EcoRI (c) two linear pieces of DNA, both of which can be cut by EcoRI (d) two linear pieces of DNA, only one of which can be cut by HindIII

b

You have a piece of DNA that includes the following sequence: 5′-ATAGGCATTCGATCCGGATAGCAT-3′ 3′-TATCCGTAAGCTAGGCCTATCGTA-5′ Which of the following RNA molecules could be transcribed from this piece of DNA? (a) 5′-UAUCCGUAAGCUAGGCCUAUGCUA-3′ (b) 5′-AUAGGCAUUCGAUCCGGAUAGCAU-3′ (c) 5′-UACGAUAGGCCUAGCUUACGGAUA-3′ (d) none of the above

b

Which of these method(s) of controlling eukaryotic gene expression is NOT employed in prokaryotic cells? A. controlling how often a gene is transcribed B. controlling how an RNA transcript is spliced C. controlling which mRNAs are exported from the nucleus to the cytosol D. controlling which mRNAs are translated into protein by the ribosomes E. controlling how rapidly proteins are destroyed once they are made

b,c

A DNA library has been constructed by purifying chromosomal DNA from mice, cutting the DNA with the restriction enzyme NotI, and inserting the fragments into the NotI site of a plasmid vector. What information cannot be retrieved from this library? (a) gene regulatory sequences (b) intron sequences (c) sequences of the telomeres (the ends of the chromosomes) (d) amino acid sequences of proteins

c

A double-stranded DNA molecule can be separated into single strands by heating it to 90°C because _______________________. (a) heat disrupts the hydrogen bonds holding the sugar-phosphate backbone together. (b) DNA is negatively charged. (c) heat disrupts hydrogen-bonding between complementary nucleotides. (d) DNA is positively charged.

c

A finished draft of the human genome was published in ______. (a) 1965. (b) 1984. (c) 2004. (d) 2012.

c

A neuron and a white blood cell have very different functions. For example, a neuron can receive and respond to electrical signals while a white blood cell defends the body against infection. This is because ______. (a) the proteins found in a neuron are completely different from the proteins found in a white blood cell. (b) the neuron and the white blood cell within an individual have the same genome. (c) the neuron expresses some mRNAs that the white blood cell does not. (d) neurons and white blood cells are differentiated cells and thus no longer need to transcribe and translate genes.

c

Alternative exons can arise through the duplication and divergence of existing exons. What type of mutation below would be least tolerated during the evolution of a new exon? (a) a nucleotide change of A to G (b) a deletion of three consecutive bases (c) mutation of the first nucleotide in the intron (d) a nucleotide change that alters a TT dinucleotide to AA

c

During DNA renaturation, two DNA strands will ________. (a) break the covalent bonds that hold the nucleotides together while maintaining the hydrogen bonds that hold the two strands together. (b) break the hydrogen bonds that hold the two strands together with no effect on the covalent bonds that hold the nucleotides together. (c) re-form a double helix if the two strands have complementary sequences. (d) re-form a double helix if the two strands are identical in sequence.

c

Figure Q7-36 (a) Exons 2 and 3 must have the same number of nucleotides. (b) Exons 2 and 3 must contain an integral number of codons (that is, the number of nucleotides divided by 3 must be an integer). (c) Exons 2 and 3 must contain a number of nucleotides that when divided by 3, leaves the same remainder (that is, 0, 1, or 2). (d) Exons 2 and 3 must have different numbers of nucleotides.

c

Figure Q7-6 shows a ribose sugar. The part of the ribose sugar that is different from the deoxyribose sugar used in DNA is pointed to by arrow ____. (a) 1. (b) 4. (c) 5. (d) 6.

c

Figure Q7-6 shows a ribose sugar. The part of the ribose sugar where a new ribonucleotide will attach in an RNA molecule is pointed to by arrow ____. (a) 1. (b) 3. (c) 4. (d) 5.

c

Which of the following changes is least likely to arise from a point mutation in a regulatory region of a gene? (a) a mutation that changes the time in an organism's life during which a protein is expressed (b) a mutation that eliminates the production of a protein in a specific cell type (c) a mutation that changes the subcellular localization of a protein (d) a mutation that increases the level of protein production in a cell

c

Which of the following is not involved in post-transcriptional control? (a) the spliceosome (b) Dicer (c) Mediator (d) RISC

c

Which of the following molecules is thought to have arisen first during evolution? (a) protein (b) DNA (c) RNA (d) all came to be at the same time

c

Which of the following pairs of codons might you expect to be read by the same tRNA as a result of wobble? (a) CUU and UUU (b) GAU and GAA (c) CAC and CAU (d) AAU and AGU

c

Which of the following proteins is likely to act as a gene repressor? (a) factor X (b) factor Y (c) factor Z (d) none of the above

c

Which of the following statements about RNA interference (or RNAi) is false? (a) RNAi is a natural mechanism used to regulate genes. (b) During the process of RNAi, hybridization of a small RNA molecule with the mRNA degrades the mRNA. (c) Because RNAi depends on the introduction of a double-stranded RNA into a cell or an organism, it is not a process that can cause heritable changes in gene expression. (d) In C. elegans, RNAi can be introduced into the animals by feeding them with bacteria that produce the inhibitory RNA molecules.

c

You have a circular plasmid that has a single EcoRI site in it, as diagrammed in Figure Q10-7, which also shows the cleavage site for EcoRI. Choose the answer below that best represents what the end of the DNA molecule will look like once you cut the plasmid with EcoRI. Note that only the very ends of the DNA molecule are shown in the answers.

c

You have purified DNA from your recently deceased goldfish. Which of the following restriction nucleases would you use if you wanted to end up with DNA fragments with an average size of 70 kilobase pairs (kb) after complete digestion of the DNA? The recognition sequence for each enzyme is indicated in the right-hand column. (a) Sau3AI GATC (b) BamHI GGATCC (c) NotI GCGGCCGC (d) XzaI GAAGGATCCTTC

c

Your colleague looks at your data above and predicts that protein G will bind more strongly to the DNA at site A, compared to protein H. Which experiment above is critical for this prediction? (a) #2 (b) #3 (c) #5 (d) #6

c

Which of the following methods is not used by cells to regulate the amount of a protein in the cell? (a) Genes can be transcribed into mRNA with different efficiencies. (b) Many ribosomes can bind to a single mRNA molecule. (c) Proteins can be tagged with ubiquitin, marking them for degradation. (d) Nuclear pore complexes can regulate the speed at which newly synthesized proteins are exported from the nucleus into the cytoplasm.

d

Which of the following might decrease the transcription of only one specific gene in a bacterial cell? (a) a decrease in the amount of sigma factor (b) a decrease in the amount of RNA polymerase (c) a mutation that introduced a stop codon into the DNA that precedes the gene's coding sequence (d) a mutation that introduced extensive sequence changes into the DNA that precedes the gene's transcription start site

d

Which of the following statements about DNA methylation in eukaryotes is false? (a) Appropriate inheritance of DNA methylation patterns involves maintenance methyltransferase. (b) DNA methylation involves a covalent modification of cytosine bases. (c) Methylation of DNA attracts proteins that block gene expression. (d) Immediately after DNA replication, each daughter helix contains one methylated DNA strand, which corresponds to the newly synthesized strand.

d

Which of the following statements about differentiated cells is true? (a) Cells of distinct types express nonoverlapping sets of transcription factors. (b) Once a cell has differentiated, it can no longer change its gene expression. (c) Once a cell has differentiated, it will no longer need to transcribe RNA. (d) Some of the proteins found in differentiated cells are found in all cells of a multicellular organism.

d

After which of the five treatments listed below can the plasmid shown in Figure Q10-22 re-form into a circle simply by treating it with DNA ligase? Assume that after treatment any small pieces of DNA are removed, and it is the larger portion of plasmid that will reassemble into a circle. After digestion with __________. 1. SalI alone 2. SalI and XhoI 3. SalI and PstI 4. SalI and SmaI 5. SmaI and PstI

1 and 2

Phenotypic changes: 1. A protein normally localized in the nucleus is now localized in the cytoplasm. _________ 2. A protein acquires a DNA-binding domain. _________ 3. Tandem copies of a gene are found in the genome. _________ 4. A copy of a bacterial gene is now found integrated on a human chromosome. _________ 5. A protein becomes much more unstable. _________ 6. A protein normally expressed only in the liver is now expressed in blood cells. ________ Types of genetic change: A. mutation within a gene B. gene duplication C. mutation in a regulatory region D. exon shuffling E. horizontal gene transfer

1-A, 2-D, 3-B, 4-E, 5-A, 6-C

Name three covalent modifications that can be made to an RNA molecule in eukaryotic cells before the RNA molecule becomes a mature mRNA.

1. A poly-A tail is added. 2. A 5 cap is added. 3. Introns can be spliced out.

The instructions specified by the DNA will ultimately specify the sequence of proteins. This process involves DNA, made up of ____ different nucleotides, which gets _________________ into RNA, which is then _________________ into proteins, made up of _____ different amino acids. In eukaryotic cells, DNA gets made into RNA in the _________________, while proteins are produced from RNA in the _________________. The segment of DNA called a _________________ is the portion that is copied into RNA; this process is catalyzed by RNA _________________.

4, transcribed, translated, 20, nucleus, cytoplasm, gene, polymerase

Imagine that an RNA polymerase is transcribing a segment of DNA that contains the following sequence: 5′-AGTCTAGGCACTGA-3′ 3′-TCAGATCCGTGACT-5′ A. If the polymerase is transcribing from this segment of DNA from left to right, which strand (top or bottom) is the template? B. What will be the sequence of that RNA (be sure to label the 5′ and 3′ ends of your RNA molecule)?

A. The bottom strand. B. 5′-AGUCUAGGCACUGA-3′

The CAP activator protein and the Lac repressor both control the Lac operon (see Figure Q8-14). You create cells that are mutant in the gene coding for the Lac repressor so that these cells lack the Lac repressor under all conditions. For these mutant cells, state whether the Lac operon will be switched on or off in the following situations, and explain why. Figure Q8-14 A. in the presence of glucose and lactose B. in the presence of glucose and the absence of lactose C. in the absence of glucose and the absence of lactose D. in the absence of glucose and the presence of lactose

A.Operon off. CAP will not bind in the presence of glucose. B. Operon off. Although normally the Lac repressor would bind in the absence of lactose, the lack of the Lac repressor in this case does not matter because the presence of glucose means that the CAP protein will not bind and activate transcription. C. Operon on. Normally in the absence of both glucose and lactose, the operon would be off. However, because the cells lack the Lac repressor, the cells cannot sense the absence of lactose. Because the CAP protein will bind and activate transcription, the operon will be on. D. Operon on. The CAP protein will bind and activate transcription because of the presence of glucose. It does not matter whether the Lac repressor gene is mutant, because there is lactose available.

Some types of gene are more highly conserved than others. For each of the following pairs of gene functions, choose the one that is more likely to be highly conserved. A. genes involved in sexual reproduction / genes involved in sugar metabolism B. DNA replication / developmental pathways C. hormone production / lipid synthesis

A.sugar metabolism B. DNA replication C. lipid synthesis

List three ways in which the process of eukaryotic transcription differs from the process of bacterial transcription.

Any three of the following are acceptable. 1. Bacterial cells contain a single RNA polymerase, whereas eukaryotic cells have three. 2. Bacterial RNA polymerase can initiate transcription without the help of additional proteins, whereas eukaryotic RNA polymerases need general transcription factors. 3. In eukaryotic cells, transcription regulators can influence transcriptional initiation thousands of nucleotides away from the promoter, whereas bacterial regulatory sequences are very close to the promoter. 4. Eukaryotic transcription is affected by chromatin structure and nucleosomes, whereas bacteria lack nucleosomes.

Give a reason why DNA makes a better material than RNA for the storage of genetic information, and explain your answer.

DNA is double-stranded and therefore the complementary strand provides a template from which damage can be repaired accurately.

Two fragments of DNA can be joined together by __________________. Restriction enzymes that cut DNA straight across the double helix produce fragments of DNA with __________________. A fragment of DNA is inserted into a __________________ in order to be cloned in bacteria. A __________________ library contains a collection of DNA clones derived from mRNAs. A __________________ library contains a collection of DNA clones derived from chromosomal DNA.

DNA ligase, blunt ends, vector, cDNA, genomic

Is this statement true or false? Explain your answer. "Since introns do not contain protein-coding information, they do not have to be removed precisely (meaning, a nucleotide here and there should not matter) from the primary transcript during RNA splicing."

False. Although it is true that the sequences within the introns are mostly dispensable, the introns must still be removed precisely because an error of one or two nucleotides would shift the reading frame of the resulting mRNA molecule and change the protein it encodes.

The following segment of DNA is from a transcribed region of a chromosome. You know that RNA polymerase moves from left to right along this piece of DNA, that the promoter for this gene is to the left of the DNA shown, and that this entire region of DNA is made into RNA. 5′-GGCATGGCAATATTGTAGTA-3′ 3′-CCGTACCGTTATAACATCAT-5′ Given this information, a student claims that the RNA produced from this DNA is: 3′-GGCATGGCAATATTGTAGTA-5′ Give two reasons why this answer is incorrect.

First, the RNA molecule should have uracil instead of thymine bases. Second, the polarity of the molecule is incorrectly labeled. The correct RNA molecule produced, using the bottom strand of the DNA duplex as a template, would be: 5′-GGCAUGGCAAUAUUGUAGUA-3′

Transposable elements litter the genomes of primates, and a few of them are still capable of moving to new regions of the genome. If a transposable element jumped into an important gene in one of your cells when you were a baby and caused a disease, is it likely that your child would also have the disease? Explain.

No, only mutations in germ cells are passed on to progeny

MicroRNAs are noncoding RNAs that are incorporated into a protein complex called __________________, which searches the __________________s in the cytoplasm for sequence complementary to that of the miRNA. When such a molecule is found, it is then targeted for __________________. RNAi is triggered by the presence of foreign __________________ molecules, which are digested by the __________________ enzyme into shorter fragments approximately 23 nucleotide pairs in length.

RISC, mRNA, destruction, dsRNA, Dicer

In eukaryotic cells, general transcription factors are required for the activity of all promoters transcribed by RNA polymerase II. The assembly of the general transcription factors begins with the binding of the factor __________________ to DNA, causing a marked local distortion in the DNA. This factor binds at the DNA sequence called the __________________ box, which is typically located 25 nucleotides upstream from the transcription start site. Once RNA polymerase II has been brought to the promoter DNA, it must be released to begin making transcripts. This release process is facilitated by the addition of phosphate groups to the tail of RNA polymerase by the factor __________________. It must be remembered that the general transcription factors and RNA polymerase are not sufficient to initiate transcription in the cell and are affected by proteins bound thousands of nucleotides away from the promoter. Proteins that link the distantly bound transcription regulators to RNA polymerase and the general transcription factors include the large complex of proteins called the__________________. The packing of DNA into chromatin also affects transcriptional initiation, and histone __________________ is an enzyme that can render the DNA less accessible to the general transcription factors.

TFIID, TATA, TFIIH, mediator, deactylase

The following DNA sequence includes the beginning of a sequence coding for a protein. What would be the result of a mutation that changed the C marked by an asterisk to an A? 5′-AGGCTATGAATG*GACACTGCGAGCCC...

The change creates a stop codon (TGA, or UGA in the mRNA) very near the beginning of the protein-coding sequence and in the correct reading frame (the beginning of the coding sequence is indicated by the ATG). Thus, translation would terminate after only four amino acids had been joined together, and the complete protein would not be made.

The length of a particular gene in human DNA, measured from the start site for transcription to the end of the protein-coding region, is 10,000 nucleotides, whereas the length of the mRNA produced from this gene is 4000 nucleotides. What is the most likely reason for this difference?

The gene contains one or more introns

Why is the old dogma "one gene—one protein" not always true for eukaryotic genes?

The transcripts from some genes can be spliced in more than one way to give mRNAs containing different sequences, thus encoding different proteins. A single eukaryotic gene may therefore encode more than one protein.

From the sequencing of the human genome, we believe that there are approximately 21,000 protein-coding genes in the genome, of which 1500- 3000 are transcription factors. If every gene has a tissue-specific and signal- dependent transcription pattern, how can such a small number of transcriptional regulatory proteins generate a much larger set of transcriptional patterns?

Transcription regulators are generally used in combinations, thereby increasing the possible regulatory repertoire of gene expression with a limited number of proteins.

A plasmid ______________. (a) can confer antibiotic resistance to a bacterium. (b) is a single-stranded circular DNA molecule that can undergo horizontal transfer among bacteria. (c) is a tool designed in the lab and never found in naturally occurring bacteria. (d) always becomes part of the bacterial chromosome during transformation.

a

Below is the sequence from the 3′ end of an mRNA. 5′-CCGUUACCAGGCCUCAUUAUUGGUAACGGAAAAAAAAAAAAAA-3′ If you were told that this sequence contains the stop codon for the protein encoded by this mRNA, what is the anticodon on the tRNA in the P site of the ribosome when release factor binds to the A site? (a) 5′-CCA-3′ (b) 5′-CCG-3′ (c) 5′-UGG-3′ (d) 5′-UUA-3′

a

During gel electrophoresis, DNA fragments _______________________. (a) travel through a matrix containing a microscopic network of pores. (b) migrate toward a negatively charged electrode. (c) can be visualized without stains or labels. (d) are separated on the basis of their sequence.

a

Experiment 1 in Figure Q8-21 is the positive control, demonstrating that the region of DNA upstream of the gene for GFP results in a pattern of expression that we normally find for the LKP1 gene. Experiment 2 shows what happens when the sites for binding factors X, Y, and Z are removed. Which experiment above demonstrates that factor X alone is sufficient for expression of LPK1 in the kidney? (a) experiment 3 (b) experiment 5 (c) experiment 6 (d) experiment 7

a

Figure Q7-6 shows a ribose sugar. RNA bases are added to the part of the ribose sugar pointed to by arrow _____. (a) 3. (b) 4. (c) 5. (d) 6.

a

Genes in eukaryotic cells often have intronic sequences coded for within the DNA. These sequences are ultimately not translated into proteins. Why? (a) Intronic sequences are removed from RNA molecules by the spliceosome, which works in the nucleus. (b) Introns are not transcribed by RNA polymerase. (c) Introns are removed by catalytic RNAs in the cytoplasm. (d) The ribosome will skip over intron sequences when translating RNA into protein.

a

If you were to cut this circular piece of DNA with HindIII, which of the answers below best predicts what you would get? (a) one linear piece of DNA (b) two circular pieces of DNA (c) two semicircular pieces of DNA (d) two linear pieces of DNA

a

MicroRNAs ____________________. (a) are produced from a precursor miRNA transcript. (b) are found only in humans. (c) control gene expression by base-pairing with DNA sequences. (d) can degrade RNAs by using their intrinsic catalytic activity

a

Mobile genetic elements are sometimes called "jumping genes," because they move from place to place throughout the genome. The exact mechanism by which they achieve this mobility depends on the genes contained within the mobile element. Which of the following mobile genetic elements carries both a transposase gene and a reverse transcriptase gene? (a) L1 (b) B1 (c) Alu (d) Tn3

a

Note that cutting DNA with EcoRI produces a staggered end, whereas cutting DNA with HaeIII produces a blunt end. Why must polymerase be added in this reaction? (a) Polymerase will fill in the staggered end to create a blunt end. (b) Polymerase is needed to seal nicks in the DNA backbone. (c) Polymerase will add nucleotides to the end produced by the HaeIII restriction nuclease. (d) Without polymerase, there will not be enough energy for the reaction to proceed.

a

The extent of complementarity of a miRNA with its target mRNA determines ___________________________. (a) whether the mRNA will be immediately degraded or whether the mRNA will first be transported elsewhere in the cell before degradation. (b) whether the mRNA will be transported to the nucleus. (c) whether RISC is degraded. (d) whether the miRNA synthesizes a complementary strand.

a

The modular nature of the Eve gene's regulatory region means that ______. (a) there are seven regulatory elements and each element is sufficient for driving expression in a single stripe. (b) all the regulatory elements for each stripe use the same transcriptional activators. (c) the E. coli LacZ gene is normally only expressed in a single stripe—unlike Eve, which is expressed in seven stripes. (d) transcription regulators only bind to the stripe 2 regulatory DNA segment in stripe 2.

a

Transcription in bacteria differs from transcription in a eukaryotic cell because __________________________. (a) RNA polymerase (along with its sigma subunit) can initiate transcription on its own. (b) RNA polymerase (along with its sigma subunit) requires the general transcription factors to assemble at the promoter before polymerase can begin transcription. (c) the sigma subunit must associate with the appropriate type of RNA polymerase to produce mRNAs. (d) RNA polymerase must be phosphorylated at its C-terminal tail for transcription to proceed.

a

When using a repeating trinucleotide sequence (such as 5′-AAC-3′) in a cell- free translation system, you will obtain: (a) three different types of peptides, each made up of a single amino acid (b) peptides made up of three different amino acids in random order (c) peptides made up of three different amino acids, each alternating with each other in a repetitive fashion (d) polyasparagine, as the codon for asparagine is AAC

a

Which amino acid would you expect a tRNA with the anticodon 5′-CUU-3′ to carry? (a) lysine (b) glutamic acid (d) leucine (d) phenylalanine

a

Which of the following does not occur before a eukaryotic mRNA is exported from the nucleus? (a) The ribosome binds to the mRNA. (b) The mRNA is polyadenylated at its 3′ end. (c) 7-methylguanosine is added in a 5′-to-5′ linkage to the mRNA. (d) RNA polymerase dissociates.

a

Which of the following generalities about genomes is true? (a) All vertebrate genomes contain roughly the same number of genes. (b) All unicellular organisms contain roughly the same number of genes. (c) The larger an organism, the more genes it has. (d) The more types of cell an organism has, the more genes it has.

a

Which of the following statements about homologous genes is true? (a) For protein-coding genes, homologous genes will show more similarity in their amino acid sequences than in their nucleotide sequences. (b) Fewer than 1% of human genes have homologs in the nematode and the fruit fly. (c) Most homologous genes arose by gene duplication. (d) A gene in humans that has homologs in plants and prokaryotes will show the same level of similarity in nucleotide sequence when the human and prokaryotic sequences are compared as when the human and chimpanzee sequences are compared.

a

Which of the following statements about pseudogenes is false? (a) Pseudogenes code for microRNAs. (b) Pseudogenes share significant nucleotide similarity with functional genes. (c) Pseudogenes are no longer expressed in the cell. (d) There are estimated to be approximately 20,000 pseudogenes in the human genome.

a

Which of the following statements about the Lac operon is false? (a) The Lac repressor binds when lactose is present in the cell. (b) Even when the CAP activator is bound to DNA, if lactose is not present, the Lac operon will not be transcribed. (c) The CAP activator can only bind DNA when it is bound to cAMP. (d) The Lac operon only produces RNA when lactose is present and glucose is absent.

a

Which of the following statements about transcriptional regulators is false? (a) Transcriptional regulators usually interact with the sugar-phosphate backbone on the outside of the double helix to determine where to bind on the DNA helix. (b) Transcriptional regulators will form hydrogen bonds, ionic bonds, and hydrophobic interactions with DNA. (c) The DNA-binding motifs of transcriptional regulators usually bind in the major groove of the DNA helix. (d) The binding of transcriptional regulators generally does not disrupt the hydrogen bonds that hold the double helix together.

a

Which of the following statements about what we have learned by comparing the modern-day human genome to other genomes is true? (a) Modern humans whose ancestors come from Europe or Asia share up to 4 percent of their genome with Neanderthals. (b) Accelerated changes, which were found when comparing the human genome to other mammalian genomes, were not found when comparing the modern-day human genome to the Neanderthal genome. (c) The human genome is far more gene-dense than the yeast genome. (d) In syntenic regions of the human and mouse genomes, both gene order and the placements of more than 95% of the mobile genetic elements are conserved.

a

Which of the following statements is false? (a) A mutation that arises in a mother's somatic cell often causes a disease in her daughter. (b) All mutations in an asexually reproducing single-celled organism are passed on to progeny. (c) In an evolutionary sense, somatic cells exist only to help propagate germ- line cells. (d) A mutation is passed on to offspring only if it is present in the germ line.

a

Which of the following statements is true? (a) The intron structure of most genes is conserved among vertebrates. (b) The more nucleotides there are in an organism's genome, the more genes there will be in its genome. (c) Because the fly Drosophila melanogaster and humans diverged from a common ancestor so long ago, a gene in the fly will show more similarity to another gene from the same species than it will to a human gene. (d) An organism from the same Order as another will be more likely to have a genome of the same size than will a more evolutionarily diverged animal.

a

Which of the following techniques is not appropriate if you want to examine the transcriptome of a specific tissue? (a) in situ hybridization (b) production of a cDNA library (c) RNA-Seq (d) microarray analysis

a

Which proteins are likely to act as gene repressors? (a) G (b) H (c) J (d) both H and J

a

Why is an excess of normal deoxyribonucleoside triphosphate molecules (dNTPs) needed during dideoxy sequencing? (a) DNA polymerase uses the dNTPs to synthesize a DNA molecule complementary to the molecule being sequenced. (b) dNTPs are consumed as energy to fuel the sequencing reactions. (c) When dNTP levels are too low, there will be very few chain-termination events. (d) The dNTPs can hybridize to the fragment to be sequenced and serve as primers for DNA polymerase.

a

You are studying a set of mouse genes whose expression increases when cells are exposed to the hormone cortisol, and you believe that the same cortisol- responsive transcriptional activator regulates all of these genes. Which of the following statements below should be true if your hypothesis is correct? (a) The cortisol-responsive genes share a DNA sequence in their regulatory regions that binds the cortisol-responsive transcriptional activator. (b) The cortisol-responsive genes must all be in an operon. (c) The transcriptional regulators that bind to the regulatory regions of the cortisol-responsive genes must all be the same. (d) The cortisol-responsive genes must not be transcribed in response to other hormones.

a

You discover that the underlying cause of a disease is a protein that is now less stable than the non-disease-causing version of the protein. This change is most likely to be due to ________. (a) a mutation within a gene. (b) a mutation within the regulatory DNA of a gene. (c) gene duplication. (d) horizontal gene transfer.

a

You want to design a DNA probe used for hybridization to isolate a clone from a cDNA library. Which of the following statements about DNA probes is true? (a) The shorter the DNA probe used to probe the library, the greater the number of colonies to which the probe might hybridize. (b) A DNA probe that contains sequences that span two exons is better suited to the purpose than a DNA probe that only contains sequences from one exon. (c) A DNA probe that contains sequences immediately upstream of the DNA that codes for the first methionine in the open reading frame will usually not hybridize to clones in a cDNA library. (d) Hybridization of a DNA probe to the plasmid of interest will permit the detection of the clone of interest; labeling of the DNA probe is not necessary.

a

miRNAs, tRNAs, and rRNAs all _____________. (a) do not code for proteins. (b) act in the nucleus. (c) are packaged with other proteins to form RISC. (d) form base pairs with mRNA molecules.

a

A mutation in the tRNA for the amino acid lysine results in the anticodon sequence 5′-UAU-3′ (instead of 5′-UUU-3′). Which of the following aberrations in protein synthesis might this tRNA cause? (a) read-through of stop codons (b) substitution of lysine for isoleucine (c) substitution of lysine for tyrosine (d) substitution of lysine for phenylalanine

b

A poison added to an in vitro translation mixture containing mRNA molecules with the sequence 5′-AUGAAAAAAAAAAAAUAA-3′ has the following effect: the only product made is a Met-Lys dipeptide that remains attached to the ribosome. What is the most likely way in which the poison acts to inhibit protein synthesis? (a) It inhibits peptidyl transferase activity. (b) It inhibits movement of the small subunit relative to the large subunit. (c) It inhibits release factor. (d) It mimics release factor.

b

Which of the following statements about RNAi is true? (a) The RNAi mechanism is found only in plants and animals. (b) RNAi is induced when double-stranded, foreign RNA is present in the cell. (c) RISC uses the siRNA duplex to locate complementary foreign RNA molecules. (d) siRNAs bind to miRNAs to induce RNAi.

b

In humans and in chimpanzees, 99% of the Alu retrotransposons are in corresponding positions. Which of the following statements below is the most likely explanation for this similarity? (a) The Alu retrotransposon is not capable of transposition in humans. (b) Most of the Alu sequences in the chimpanzee genome underwent duplication and divergence before humans and chimpanzees diverged. (c) The Alu retrotransposons are in the most beneficial position in the genome for primates. (d) The Alu retrotransposons must also be in the same position in flies.

b

Investigators performed nuclear transplant experiments to determine whether DNA is altered irreversibly during development. Which of the following statements about these experiments is true? (a) Because the donor nucleus is taken from an adult animal, the chromosomes from the nucleus must undergo recombination with the DNA in the egg for successful development to occur. (b) The embryo that develops from the nuclear transplant experiment is genetically identical to the donor of the nucleus. (c) The meiotic spindle of the egg must interact with the chromosomes of the injected nuclei for successful nuclear transplantation to occur. (d) Although nuclear transplantation has been successful in producing embryos in some mammals with the use of foster mothers, evidence of DNA alterations during differentiation has not been obtained for plants.

b

Starting with one double-stranded DNA molecule, how many cycles of PCR would you have to perform to produce about 100 double-stranded copies (assuming 100% efficiency per cycle)? (a) 2 (b) 7 (c) 25 (d) 100

b

The distinct characteristics of different cell types in a multicellular organism result mainly from the differential regulation of the _________________. (a) replication of specific genes. (b) transcription of genes transcribed by RNA polymerase II. (c) transcription of housekeeping genes. (d) proteins that directly bind the TATA box of eukaryotic genes.

b

The nucleotide sequences between individuals differ by 0.1%, yet the human genome is made up of about 3 × 109 nucleotide pairs. Which of the following statements is false? (a) In most human cells, the homologous autosomes differ from each other by 0.1%. (b) All changes between human individuals are single-nucleotide polymorphisms. (c) Any two individuals (other than identical twins) will generally have more than 3 million genetic differences in their genomes. (d) Much of the variation between human individuals was present 100,000 years ago, when the human population was small.

b

The number of distinct protein species found in humans and other organisms can vastly exceed the number of genes. This is largely due to ______________. (a) protein degradation. (b) alternative splicing. (c) homologous genes. (d) mutation.

b

The piece of RNA below includes the region that codes for the binding site for the initiator tRNA needed in translation. 5′-GUUUCCCGUAUACAUGCGUGCCGGGGGC-3′ Which amino acid will be on the tRNA that is the first to bind to the A site of the ribosome? (a) methionine (b) arginine (c) cysteine (d) valine

b

The tryptophan operator ___________________________. (a) is an allosteric protein. (b) binds to the tryptophan repressor when the repressor is bound to tryptophan. (c) is required for production of the mRNA encoded by the tryptophan operon. (d) is important for the production of the tryptophan repressor.

b

There are several reasons why the primase used to make the RNA primer for DNA replication is not suitable for gene transcription. Which of the statements below is not one of those reasons? (a) Primase initiates RNA synthesis on a single-stranded DNA template. (b) Primase can initiate RNA synthesis without the need for a base-paired primer. (c) Primase synthesizes only RNAs of about 5-20 nucleotides in length. (d) The RNA synthesized by primase remains base-paired to the DNA template.

b

What do you predict would happen if you created a tRNA with an anticodon of 5′-CAA-3′ that is charged with methionine, and added this modified tRNA to a cell-free translation system that has all the normal components required for translating RNAs? (a) methionine would be incorporated into proteins at some positions where glutamine should be (b) methionine would be incorporated into proteins at some positions where leucine should be (c) methionine would be incorporated into proteins at some positions where valine should be (d) translation would no longer be able to initiate

b

What do you predict would happen if you replace the Lac operator DNA from the Lac operon with the DNA from the operator region from the tryptophan operon? (a) The presence of lactose will not cause allosteric changes to the Lac repressor. (b) The Lac operon will not be transcribed when tryptophan levels are high. (c) The lack of glucose will no longer allow CAP binding to the DNA. (d) RNA polymerase will only bind to the Lac promoter when lactose is present.

b

Which of the following DNA sequences is not commonly carried on a DNA-only transposon? (a) transposase gene (b) reverse transcriptase gene (c) recognition site for transposase (d) antibiotic-resistance gene

b

Which of the following proteins are likely to act as gene repressors? (a) MetA only (b) MetB only (c) MetC only (d) Both MetA and MetC

b

Which of the following statements about DNA libraries is true? (a) Production of a DNA library involves the direct insertion of short DNA fragments into bacteria through transformation. (b) By placing the library DNA into bacteria, the bacteria can be used to amplify the desired DNA fragments from the DNA library. (c) Individual bacteria that have taken up most of the library DNA are selected for during the construction of a DNA library. (d) The library DNA within the bacteria will only be replicated when it hybridizes to a DNA probe.

b

Which of the following statements about PCR is false? (a) PCR uses a DNA polymerase from a thermophilic bacterium. (b) PCR is particularly powerful because after each cycle of replication, there is a linear increase in the amount of DNA available. (c) For PCR, every round of replication is preceded by the denaturation of the double-stranded DNA molecules. (d) The PCR will generate a pool of double-stranded DNA molecules, most of which will have DNA from primers at the 5′ ends.

b

Which of the following statements about RNA splicing is false? (a) Conventional introns are not found in bacterial genes. (b) For a gene to function properly, every exon must be removed from the primary transcript in the same fashion on every mRNA molecule produced from the same gene. (c) Small RNA molecules in the nucleus perform the splicing reactions necessary for the removal of introns. (d) Splicing occurs after the 5′ cap has been added to the end of the primary transcript.

b

Given this information, which of the following statements is false? (a) These are all highly related species, because the sequence divergence between the most divergent species is 3%. (b) Species M is just as related to species G as it is to species J. (c) Species N is more closely related to the last common ancestor of all of these species than to any of the other species shown in the diagram. (d) Species G and H are as closely related to each other as species J and K are to each other.

c

HIV is a human retrovirus that integrates into the host cell's genome and will eventually replicate, produce viral proteins, and ultimately escape from the host cell. Which of the following proteins is not encoded in the HIV genome? (a) reverse transcriptase (b) envelope protein (c) RNA polymerase (d) capsid protein

c

In principle, how many different cell types can an organism having four different types of transcription regulator and thousands of genes create? (a) up to 4 (b) up to 8 (c) up to 16 (d) thousands

c

In what tissue is factor Z normally present and bound to the DNA? (a) kidney (b) liver (c) heart (d) none of the above

c

Operons ___________________________. (a) are commonly found in eukaryotic cells. (b) are transcribed by RNA polymerase II. (c) contain a cluster of genes transcribed as a single mRNA. (d) can only be regulated by gene activator proteins.

c

PCR was invented in _______. (a) the 1800s. (b) the 1950s. (c) the 1980s. (d) 2009.

c

RNA in cells differs from DNA in that ___________________. (a) it contains the base uracil, which pairs with cytosine. (b) it is single-stranded and cannot form base pairs. (c) it is single-stranded and can fold up into a variety of structures. (d) the sugar ribose contains fewer oxygen atoms than does deoxyribose.

c

Recombinant DNA technologies involve techniques that permit the creation of custom-made DNA molecules that can be introduced back into living organisms. These technologies were first developed in the ______. (a) 1930s. (b) 1950s. (c) 1970s. (d) 1990s.

c

Ribozymes catalyze which of the following reactions? (a) DNA synthesis (b) transcription (c) RNA splicing (d) protein hydrolysis

c

The MyoD transcriptional regulator is normally found in differentiating muscle cells and participates in the transcription of genes that produce muscle-specific proteins, such as those needed in contractile tissue. Amazingly, expression of MyoD in fibroblasts causes these cells derived from skin connective tissue to produce proteins normally only seen in muscles. However, some other cell types do not transcribe muscle-specific genes when MyoD is expressed in them. Which of the following statements below is the best explanation of why MyoD can cause fibroblasts to express muscle- specific genes? (a) Unlike some other cell types, fibroblasts have not lost the muscle-specific genes from their genome. (b) The muscle-specific genes must be in heterochromatin in fibroblasts. (c) During their developmental history, fibroblasts have accumulated some transcriptional regulators in common with differentiating muscle cells. (d) The presence of MyoD is sufficient to activate the transcription of muscle- specific genes in all cell types.

c

The concentration of a particular protein, X, in a normal human cell rises gradually from a low point, immediately after cell division, to a high point, just before cell division, and then drops sharply. The level of its mRNA in the cell remains fairly constant throughout this time. Protein X is required for cell growth and survival, but the drop in its level just before cell division is essential for division to proceed. You have isolated a line of human cells that grow in size in culture but cannot divide, and on analyzing these mutants, you find that levels of X mRNA in the mutant cells are normal. Which of the following mutations in the gene for X could explain these results? (a) the introduction of a stop codon that truncates protein X at the fourth amino acid (b) a change of the first ATG codon to CCA (c) the deletion of a sequence that encodes sites at which ubiquitin can be attached to the protein (d) a change at a splice site that prevents splicing of the RNA

c

The human genome encodes about 21,000 protein-coding genes. Approximately how many such genes does the typical differentiated human cell express at any one time? (a) 21,000—all of them (b) between 18,900 and 21,000—at least 90% of the genes (c) between 5000 and 15,000 (d) less than 2100

c

The ribosome is important for catalyzing the formation of peptide bonds. Which of the following statements is true? (a) The number of rRNA molecules that make up a ribosome greatly exceeds the number of protein molecules found in the ribosome. (b) The large subunit of the ribosome is important for binding to the mRNA. (c) The catalytic site for peptide bond formation is formed primarily from an rRNA. (d) Once the large and small subunits of the ribosome assemble, they will not separate from each other until degraded by the proteasome.

c

The sigma subunit of bacterial RNA polymerase ___________________. (a) contains the catalytic activity of the polymerase. (b) remains part of the polymerase throughout transcription. (c) recognizes promoter sites in the DNA. (d) recognizes transcription termination sites in the DNA.

c

The yeast genome was sequenced more than 15 years ago, yet the total number of genes continues to be refined. The sequencing of closely related yeast species was important for validating the identity of short (less than 100 nucleotides long) open reading frames (ORFs) that were otherwise difficult to predict. What is the main reason that these short ORFs are hard to find without the genomes of other yeast for comparison? (a) Short ORFs are found only in yeast. (b) The short ORFs code for RNAs. (c) Many short stretches of DNA may lack a stop codon simply by chance, making it difficult to distinguish those DNA sequences that code for proteins from those that do not. (d) Short ORFs occur mainly in gene-rich regions, making them difficult to identify by computer programs.

c

What is the most likely explanation of why the overall mutation rates in bacteria and in humans are roughly similar? (a) Cell division needs to be fast. (b) Most mutations are silent. (c) There is a narrow range of mutation rates that offers an optimal balance between keeping the genome stable and generating sufficient diversity in a population. (d) It benefits a multicellular organism to have some variability among its cells.

c

Which of the following statements about genomic DNA libraries is false? (a) The larger the size of the fragments used to make the library, the fewer colonies you will have to examine to find a clone that hybridizes to your probe. (b) The larger the size of the fragments used to make the library, the more difficult it will be to find your gene of interest once you have identified a clone that hybridizes to your probe. (c) The larger the genome of the organism from which a library is derived, the larger the fragments inserted into the vector will tend to be. (d) The smaller the gene you are seeking, the more likely it is that the gene will be found on a single clone.

c

Which of the following statements about how fruit flies can develop an eye in the middle of a leg is true? (a) When the Ey gene is expressed in adult leg cells, these cells de- differentiate and become eye cells. (b) The Ey gene encodes a transcription regulator that is the only transcription regulator used to produce a fruit-fly eye. (c) When the Ey gene is introduced into cells that would normally give rise to a leg, the transcription regulators used to control its expression in the leg are different from those that are normally used to control Ey expression in the eye. (d) All the eye cells found in the adult leg are a single cell type and have identical characteristics.

c

Which of the following statements about miRNAs is false? (a) One miRNA can regulate the expression of many genes. (b) miRNAs are transcribed in the nucleus from genomic DNA. (c) miRNAs are produced from rRNAs. (d) miRNAs are made by RNA polymerase.

c

Which of the following statements about nucleosomes is true? (a) Nucleosomes activate transcription when bound to the promoter. (b) Although RNA polymerase can access DNA packed within nucleosomes, the general transcription factors and transcriptional regulators cannot. (c) Histone acetyltransferases affect transcription by both altering chromatin structure to allow accessibility to the DNA and by adding acetyl groups to histones that can bind proteins that promote transcription. (d) Histone deacetylases remove lysines from histone tails.

c

Which of the following statements about the proteasome is false? (a) Ubiquitin is a small protein that is covalently attached to proteins to mark them for delivery to the proteasome. (b) Proteases reside in the central cylinder of a proteasome. (c) Misfolded proteins are delivered to the proteasome, where they are sequestered from the cytoplasm and can attempt to refold. (d) The protein stoppers that surround the central cylinder of the proteasome use the energy from ATP hydrolysis to move proteins into the proteasome inner chamber.

c

Which of the following statements is true? (a) Ribosomes are large RNA structures composed solely of rRNA. (b) Ribosomes are synthesized entirely in the cytoplasm. (c) rRNA contains the catalytic activity that joins amino acids together. (d) A ribosome binds one tRNA at a time.

c

Which of the following statements is true? (a) The two genes must be transcribed into RNA using the same strand of DNA. (b) If gene A is transcribed in a cell, gene B cannot be transcribed. (c) Gene A and gene B can be transcribed at different rates, producing different amounts of RNA within the same cell. (d) If gene A is transcribed in a cell, gene B must be transcribed.

c

Which of these statements is consistent with these sequence-comparison data? (a) The gorilla sequence is more similar to the chimp sequence than to the human sequence. (b) Since these sequences are so similar, this protein must also be found in invertebrates. (c) The chimp DNA sequence has likely diverged at the DNA coding for amino acid 15 from the sequence found in the last common ancestor of humans and chimps. (d) The last common ancestor of chimps and gorillas most likely used AAA to code for amino acid number 3.

c

Which one of the following is the main reason that a typical eukaryotic gene is able to respond to a far greater variety of regulatory signals than a typical prokaryotic gene or operon? (a) Eukaryotes have three types of RNA polymerase. (b) Eukaryotic RNA polymerases require general transcription factors. (c) The transcription of a eukaryotic gene can be influenced by proteins that bind far from the promoter. (d) Prokaryotic genes are packaged into nucleosomes.

c

Which proteins do you predict are bound to the promoter in experiment #8? (a) only H and J (b) only G and H (c) only G and J (d) only J

c

Which transcription factors are normally bound to the Psf promoter in the presence of Mg2+ only? (a) none (b) MetA only (c) MetA and Met B (d) MetA, MetB, and MetC

c

Which transcription factors are normally bound to the Psf promoter in the presence of both Mg2+ and Ca2+? (a) MetA and MetB (b) MetB and MetC (c) MetA and MetC (d) MetA, MetB, and MetC

c

Why are dideoxyribonucleoside triphosphates used during DNA sequencing? (a) They cannot be incorporated into DNA by DNA polymerase. (b) They are incorporated into DNA particularly well by DNA polymerases from thermophilic bacteria. (c) Incorporation of a dideoxyribonucleoside triphosphate leads to the termination of replication for that strand. (d) Dideoxyribonucleoside triphosphates are more stable than deoxyribonucleoside triphosphates.

c

With fully automated Sanger sequencing, all four chain-terminating ddNTPs can be added into a single reaction. This is different from the traditional slab gel Sanger sequencing, where a different reaction had to be carried out for each ddNTP. The mixing of all four ddNTPs can be carried out because ______________. (a) the fully automated Sanger sequencing reactions are loaded onto a capillary gel. (b) the fully automated Sanger sequencing reactions utilize ddNTPs each labeled with a different fluorescent tag, which allows all four ddNTPs to be incorporated into a single molecule of DNA. (c) the fully automated Sanger sequencing reactions generate a set of products, each of which carries a single fluorescent tag whose color reveals the identity of the base that is at the end of the product. (d) the fully automated Sanger sequencing reactions do not require DNA polymerase because the bases are read as the DNA is pulled through a tiny pore at the end of the capillary gel.

c

You create a recombinant DNA molecule that fuses the coding sequence of green fluorescent protein to the regulatory DNA sequences that control the expression of your favorite genes. Which of the following pieces of information can you NOT gain by examining the expression of this reporter gene? (a) the tissue where the protein encoded by this gene is expressed (b) the cell in which the protein encoded by this gene is expressed (c) the specific location within the cell of the protein encoded by this gene (d) when, during an organism's development, this gene is expressed

c

Your friend works in a lab that is studying why a particular mutant strain of Drosophila grows an eye on its wing. Your friend discovers that this mutant strain of Drosophila is expressing a transcription factor incorrectly. In the mutant Drosophila, this transcription factor, which is normally expressed in the primordial eye tissue, is now misexpressed in the primordial wing tissue, thus turning on transcription of the set of genes required to produce an eye in the wing primordial tissue. If this hypothesis is true, which of the following types of genetic change would most likely lead to this situation? (a) a mutation within the transcription factor gene that leads to a premature stop codon after the third amino acid (b) a mutation within the transcription factor gene that leads to a substitution of a positively charged amino acid for a negatively charged amino acid (c) a mutation within an upstream enhancer of the gene (d) a mutation in the TATA box of the gene

c

According to current thinking, the minimum requirement for life to have originated on Earth was the formation of a _______________. (a) molecule that could provide a template for the production of a complementary molecule. (b) double-stranded DNA helix. (c) molecule that could direct protein synthesis. (d) molecule that could catalyze its own replication.

d

DNA can be introduced into bacteria by a mechanism called ____________. (a) transcription. (b) ligation. (c) replication. (d) transformation.

d

DNA ligase is an enzyme used when making recombinant DNA molecules in the lab. In what normal cellular process is DNA ligase involved? (a) none, it is only found in virally infected cells (b) transcription (c) transformation (d) DNA replication

d

Given this information, which of the following statements is true? (a) The ancestral globin gene arose 500 million years ago. (b) The α-globin gene is more closely related to the ε-globin gene than to the δ-globin gene. (c) The nucleotide sequences of the two γ-globins will be most similar because they are the closest together on the chromosome. (d) The fetal β-globins arose from a gene duplication that occurred 200 million years ago, which gave rise to a β-globin expressed in the fetus and a β-globin expressed in the adult.

d

PCR involves a heating step, followed by a cooling step, and then DNA synthesis. What is the primary reason for why this cooling step is necessary? (a) Cooling the reaction ensures the integrity of the covalent bonds holding the nucleotides together in the DNA strand. (b) Cooling the reaction gives the DNA polymerase an opportunity to rest from the previous cycle so that it will be ready for the next round of synthesis. (c) Transcription takes place during the cooling step. (d) Cooling the reaction brings the temperature down to a level that is compatible with the short primers forming stable hydrogen bonds with the DNA to be amplified.

d

Second-generation sequencing differs from Sanger sequencing because _____________. (a) second-generation sequencing does not depend on chain-terminator ddNTPs. (b) second-generation sequencing does not require DNA polymerase. (c) for the cost per base sequenced, second-generation sequencing is much more expensive than Sanger sequencing. (d) second-generation sequencing can sequence tens of millions of pieces of DNA at the same time on a single glass slide.

d

The pufferfish, Fugu rubripes, has a genome that is one-tenth the size of mammalian genomes. Which of the following statements is not a possible reason for this size difference? (a) Intron sequences in Fugu are shorter than those in mammals. (b) Fugu lacks the repetitive DNA found in mammals. (c) The Fugu genome seems to have lost sequences faster than it has gained sequences over evolutionary time. (d) Fugu has lost many genes that are part of gene families.

d

Total nucleic acids are extracted from a culture of yeast cells and are then mixed with resin beads to which the polynucleotide 5 - TTTTTTTTTTTTTTTTTTTTTTTTT-3 has been covalently attached. After a short incubation, the beads are then extracted from the mixture. When you analyze the cellular nucleic acids that have stuck to the beads, which of the following is most abundant? (a) DNA (b) tRNA (c) rRNA (d) mRNA

d

Transcription is similar to DNA replication in that ___________________. (a) an RNA transcript is synthesized discontinuously and the pieces are then joined together. (b) it uses the same enzyme as that used to synthesize RNA primers during DNA replication. (c) the newly synthesized RNA remains paired to the template DNA. (d) nucleotide polymerization occurs only in the 5′-to-3′ direction.

d

Unlike DNA, which typically forms a helical structure, different molecules of RNA can fold into a variety of three-dimensional shapes. This is largely because ___________________. (a) RNA contains uracil and uses ribose as the sugar. (b) RNA bases cannot form hydrogen bonds with each other. (c) RNA nucleotides use a different chemical linkage between nucleotides compared to DNA. (d) RNA is single-stranded.

d

Using genetic engineering techniques, you remove the sequences that code for the ribosome-binding sequences of the bacterial LacZ gene. The removal of these sequences will lead to ___________. (a) more LacZ protein produced due to faster ribosome movement across the LacZ mRNA. (b) transcriptional repression, resulting in fewer mRNA molecules produced from this gene. (c) a longer half-life for the LacZ mRNA. (d) translational inhibition of the LacZ mRNA.

d

Viral genomes _________. (a) can be made of DNA. (b) can be made of RNA. (c) can be either double-stranded or single-stranded. (d) All answers above are true.

d

Which of the following functions do you not expect to find in the set of genes found in all organisms on Earth? (a) DNA replication (b) DNA repair (c) protein production (d) RNA splicing

d

Which of the following is not a general mechanism that cells use to maintain stable patterns of gene expression as cells divide? (a) a positive feedback loop, mediated by a transcriptional regulator that activates transcription of its own gene in addition to other cell-type- specific genes (b) faithful propagation of condensed chromatin structures as cells divide (c) inheritance of DNA methylation patterns when cells divide (d) proper segregation of housekeeping proteins when cells divide

d

Which of the following is not a good example of a housekeeping protein? (a) DNA repair enzymes (b) histones (c) A TP synthase (d) hemoglobin

d

Which of the following is true of a retrovirus but not of the Alu retrotransposon? (a) It requires cellular enzymes to make copies. (b) It can be inserted into the genome. (c) It can be excised and moved to a new location in the genome. (d) It encodes its own reverse transcriptase.

d

Which of the following statements about mobile genetic elements is true? (a) Mobile genetic elements can sometimes rearrange the DNA sequences of the genome in which they are embedded by accidentally excising neighboring chromosomal regions and reinserting these sequences into different places within the genome. (b) DNA-only transposons do not code for proteins but instead rely on transposases found in cells that are infected by viruses. (c) The two major families of transposable sequences found in the human genome are DNA-only transposons that move by replicative transposition. (d) During cut-and-paste transposition, the donor DNA will no longer have the mobile genetic element embedded in its sequence when transposition is complete.

d

Which of the following statements about the globin gene family is true? (a) The globin protein, which can carry oxygen molecules throughout an organism's body, was first seen in ancient vertebrate species about 500 million years ago. (b) The gene duplication that led to the expansion of the globin gene family led to the separation and distribution of globin on many chromosomes in mammals, such that no chromosome has more than a single functional member of the globin gene family. (c) As globin gene family members diverged over the course of evolution, all the DNA sequence variations that have accumulated between family members are within the regulatory DNA sequences that affect when and how strongly each globin gene is expressed. (d) Some of the duplicated globin genes that arose during vertebrate evolution acquired inactivating mutations and became pseudogenes in modern vertebrates.

d

Which of the following statements about the human genome is false? (a) About 50% of the human genome is made up of mobile genetic elements. (b) More of the human genome comprises intron sequences than exon sequences. (c) About 1.5% of the human genome codes for exons. (d) Only the exons are conserved between the genomes of humans and other mammals.

d

Which of the following statements is false? (a) A new RNA molecule can begin to be synthesized from a gene before the previous RNA molecule's synthesis is completed. (b) If two genes are to be expressed in a cell, these two genes can be transcribed with different efficiencies. (c) RNA polymerase is responsible for both unwinding the DNA helix and catalyzing the formation of the phosphodiester bonds between nucleotides. (d) Unlike DNA, RNA uses a uracil base and a deoxyribose sugar.

d

Which of the following statements is false? (a) One piece of DNA will be obtained when this DNA is cut by NotI. (b) A piece of DNA that cannot be cut by EcoRI will be obtained by cutting this DNA with both NotI and HindIII. (c) Two DNA fragments that cannot be cut by HindIII will be obtained when this DNA is cut by EcoRI and NotI. (d) Two DNA fragments of unequal size will be created when this DNA is cut by both HindIII and EcoRI.

d

Which of the following statements is false? (a) The human genome is more similar to the orangutan genome than it is to the mouse genome. (b) A comparison of genomes shows that 90% of the human genome shares regions of conserved synteny with the mouse genome. (c) Primates, dogs, mice, and chickens all have about the same number of genes. (d) Genes that code for ribosomal RNA share significant similarity in all eukaryotes but are much more difficult to recognize in archaea.

d

Which of the following would contribute most to successful exon shuffling? (a) shorter introns (b) a haploid genome (c) exons that code for more than one protein domain (d) introns that contain regions of similarity to one another

d

Which proteins are likely to act as gene activators? (a) G (b) H (c) J (d) both H and J

d

You are interested in a single-stranded DNA molecule that contains the following sequence: 5′- .....GATTGCAT.... -3′ Which molecule can be used as a probe that will hybridize to your sequence of interest? (a) 5′-GATTGCAT-3′ (b) 5′-TACGTTAG-3′ (c) 5′-CTAACGTA-3′ (d) 5′-ATGCAATC-3′

d

You are studying a gene that has four exons and can undergo alternative splicing. Exon 1 has two alternatives, exon 2 has five alternatives, exon 3 has three alternatives, and exon 4 has four alternatives. If all possible splicing combinations were used, how many different splice isoforms could be produced for this gene? (a) 22 (b) 30 (c) 60 (d) 120

d

You have a segment of DNA that contains the following sequence: 5′-GGACTAGACAATAGGGACCTAGAGATTCCGAAA-3′ 3′-CCTGATCTGTTATCCCTGGATCTCTAAGGCTTT-5′ You know that the RNA transcribed from this segment contains the following sequence: 5′-GGACUAGACAAUAGGGACCUAGAGAUUCCGAAA-3′ Which of the following choices best describes how transcription occurs? (a) the top strand is the template strand; RNA polymerase moves along this strand from 5′ to 3′ (b) the top strand is the template strand; RNA polymerase moves along this strand from 3′ to 5′ (c) the bottom strand is the template strand; RNA polymerase moves along this strand from 5′ to 3′ (d) the bottom strand is the template strand; RNA polymerase moves along this strand from 3′ to 5′

d

You have sequenced a fragment of DNA and produced the gel shown in Figure Q10-50. Near the top of the gel, there is a section where there are bands in all four lanes (indicated by the arrow). Which of the following mishaps would account for this phenomenon? Explain your answer.( a) You mistakenly added all four dideoxynucleotides to one of the reactions. (b) You forgot to add deoxynucleotides to the reactions. (c) Your primer hybridizes to more than one area of the fragment of DNA you are sequencing. (d) A restriction nuclease cut a fraction of the DNA you are sequencing.

d

You isolate a pathogenic strain of E. coli from a patient and discover that this E. coli strain is resistant to an antibiotic. Common laboratory strains of E. coli are not resistant to this antibiotic, nor are any other previously isolated pathogenic E. coli strains. However, such resistance has been observed in other bacteria in the hospital in which the patient was treated. This newly discovered antibiotic resistance in E. coli is most likely due to _______. (a) a mutation within a gene. (b) a mutation within the regulatory DNA of a gene. (c) gene duplication. (d) horizontal gene transfer.

d

You want to design a DNA probe used for hybridization to isolate a clone from a cDNA library. Which of the following concerns about DNA probe design is the most legitimate? (a) You must be careful when designing your probe to take into account which DNA strand was transcribed in mRNA and choose a probe complementary to the mRNA. (b) You must be careful not to include any DNA sequences in your probe that are upstream (5′) of the AUG start codon. (c) You must make sure that all the DNA sequences in your probe lie within an exon, and do not span two exons. (d) You must make sure that all the DNA sequences in your probe are not located downstream (3′) of the polyadenylation signal.

d

snRNAs ___________________. (a) are translated into snRNPs. (b) are important for producing mature mRNA transcripts in bacteria. (c) are removed by the spliceosome during RNA splicing. (d) can bind to specific sequences at intron-exon boundaries through complementary base-pairing.

d

During gel __________________, DNA fragments can be loaded into one end of an agarose slab to separate the fragments on the basis of charge. As ____________________ is applied across the agarose slab, the DNA molecules, which have a __________________ charge, will migrate toward the ___________________ electrode. Because _________________ DNA fragments will migrate more quickly, they will be found furthest away from the area of the gel where the DNA fragments were loaded. One method to visualize the DNA on the agarose slab involves staining the DNA with a dye that will __________________ under ultraviolet light.

electrophoresis, voltage, negative, positive, smaller, fluoresce

The transmission of information important for gene regulation from parent to daughter cell, without altering the actual nucleotide sequence, is called _________________ inheritance. This type of inheritance is seen with the inheritance of the covalent modifications on ____________ proteins bound to DNA; these modifications are important for reestablishing the pattern of chromatin structure found on the parent chromosome. Another way to inherit chromatin structure involves DNA __________, a covalent modification that occurs on cytosine bases that typically turns off the transcription of a gene. Gene transcription patterns can also be transmitted across generations through positive _____________ loops that can involve a transcription regulator activating its own transcription in addition to other genes. These mechanisms all allow for cell ________________, a property involving the maintenance of gene expression patterns important for cell identity.

epigenetic, histone, methylation, feedback, memory

During transcription in __________________ cells, transcriptional regulators that bind to DNA thousands of nucleotides away from a gene's promoter can affect a gene's transcription. The __________________ is a complex of proteins that links distantly bound transcription regulators with the proteins bound closer to the transcriptional start site. Transcriptional activators can also interact with histone __________________s, which alter chromatin by modifying lysines in the tail of histone proteins to allow greater accessibility to the underlying DNA. Gene repressor proteins can reduce the efficiency of transcription initiation by attracting histone __________________s. Sometimes, many contiguous genes can become transcriptionally inactive as a result of chromatin remodeling, like the __________________ found in interphase chromosomes.

eukaryotic, mediator, acetylases, deacetylases, heterochromatin

Sexual reproduction in a multicellular organism involves specialized reproductive cells, called __________________s, which come together to form a __________________ that will divide to produce both reproductive and __________________ cells. A point mutation in the DNA is considered a __________________ mutation if it changes a nucleotide that leads to no phenotypic consequence; a point mutation is considered __________________ if it changes a nucleotide within a gene and causes the protein to be nonfunctional.

gametes, zygote, somatic, neutral, deleterious

Once an mRNA is produced, its message can be decoded on ribosomes. The ribosome is composed of two subunits: the __________________ subunit, which catalyzes the formation of the peptide bonds that link the amino acids together into a polypeptide chain, and the __________________ subunit, which matches the tRNAs to the codons of the mRNA. During the chain elongation process of translating an mRNA into protein, the growing polypeptide chain attached to a tRNA is bound to the __________________ site of the ribosome. An incoming aminoacyl-tRNA carrying the next amino acid in the chain will bind to the __________________ site by forming base pairs with the exposed codon in the mRNA. The __________________ enzyme catalyzes the formation of a new peptide bond between the growing polypeptide chain and the newly arriving amino acid. The end of a protein-coding message is signaled by the presence of a stop codon, which binds the __________________ called release factor. Eventually, most proteins will be degraded by a large complex of proteolytic enzymes called the __________________.

large, small, P, A, peptide transferase, protein, proteasome

The genes of a bacterial __________________ are transcribed into a single mRNA. Many bacterial promoters contain a region known as a(n) __________________, to which a specific transcription regulator binds. Genes in which transcription is prevented are said to be __________________. The interaction of small molecules, such as tryptophan, with __________________ DNA-binding proteins, such as the tryptophan repressor, regulates bacterial genes. Genes that are being __________________ expressed are being transcribed all the time.

operon, operator, repressed, allosteric, constitutively

A nuclease hydrolyzes the __________________ bonds in a nucleic acid. Nucleases that cut DNA only at specific short sequences are known as __________________. DNA composed of sequences from different sources is known as __________________. __________________ can be used to separate DNA fragments of different sizes. Millions of copies of a DNA sequence can be made entirely in vitro by the __________________ technique.

phosphodiester, restriction nucleases, recombinant DNA, Gel electrophoresis, polymerase chain reaction

Most variation between individual humans is in the form of __________________. __________________ may arise by recombination within introns and can create proteins with novel combinations of domains. Scientists and government regulators must be very careful when introducing herbicide- resistant transgenic corn plants into the environment, because if resistant weeds arise from __________________ then the herbicides could become useless. Families of related genes can arise from a single ancestral copy by __________________ and subsequent __________________.

single-nucleotide, polymorphisms, Exon shuffling, horizontal gene transfer, gene duplication, divergence

For a cell's genetic material to be used, the information is first copied from the DNA into the nucleotide sequence of RNA in a process called __________________. Various kinds of RNA are produced, each with different functions. __________________ molecules code for proteins, __________________ molecules act as adaptors for protein synthesis, __________________ molecules are integral components of the ribosome, and __________________ molecules are important in the splicing of RNA transcripts.

transcription, mRNA, tRNA, rRNA, snRNA


Set pelajaran terkait

Chapter 32: Electromagnetic Waves

View Set

Penny Review: Chromosomal Abnormalities

View Set

Chapter 11 venture growth management

View Set

Can I ask you some questions?我(wǒ) 可(kě)以(yǐ) 问(wèn)你(nǐ) 一(yì)些(xiē) 问(wèn)题(tí) 吗(ma)?

View Set

Christian Worldview Midterm- Rapinchuk

View Set