Statistics Chapter 5

Lakukan tugas rumah & ujian kamu dengan baik sekarang menggunakan Quizwiz!

​Often, conditional probabilities are worded with what​ phrase?

"given that"

Probabilities where the focus is on just one group of objects and a random sample is taken from that group alone are called​ what?

Conditional probabilities

In​ statistics, what is true of​ randomness?

Randomness is hard to achieve without help from a computer or some other randomizing device.

If an experiment with a random outcome is repeated a large number of​ times, the empirical probability of an event is likely to be close to the true probability. This mathematical theorem is called​ what?

The law of large numbers

Imagine flipping a fair coin many times. Explain what should happen to the proportion of heads as the number of coin flips increases. Which of the following is the best explanation to what should happen to the proportion of heads as the number of coin flips​ increases?

The proportion should get closer to 0.5 as the number of flips increases.

The sample space of a random experiment is​ what?

The set of all possible and equally likely outcomes of the experiment

Probabilities that are based on​ short-run relative frequencies are called​ what?

Empirical probabilities

The percentage of​ left-handed people in a certain country is estimated to be 9​%. Women are about six times as likely to be​ left-handed as men. Are gender and handedness independent or​ associated? Explain.

Gender and handedness are associated because women are more likely to be​ left-handed than men.

Because they are generated by a seed value that starts the random​ sequence, computer-generated random numbers are sometimes called​ what?

Pseudo-random numbers

Experiments used to produce empirical probabilities are called​ what?

Simulations

Given the event​ "a die lands with a 6 on​ top", which of the following is the complement of this​ event?

The die lands with a​ 1, 2,​ 3, 4, or 5 on top

Assume the only grades possible in a history course are​ A, B,​ C, or lower than C. The probability that a randomly selected student will get an A in the course is 0.40​, the probability that a student will get a B in the course is 0.24​, and the probability that a student will get a C in the course is 0.17. What is the probability that a student will get a grade lower than a​ C?

The probability that a student will get a grade less than C is 0.19.

Assume the only grades possible in a history course are​ A, B,​ C, or lower than C. The probability that a randomly selected student will get an A in the course is 0.40​, the probability that a student will get a B in the course is 0.24​, and the probability that a student will get a C in the course is 0.17. What is the probability that a student will get an A OR a B OR a​ C?

The probability that a student will get an A OR a B OR a C is 0.81.

Suppose a person is chosen at random. Use your knowledge about the world to decide whether the event that the person has green eyes and the event that the person is right dash handed are independent or associated.

The two events are independent because having green eyes does not depend on being right dash handed.

When events A and B are said to be​ independent, what does that​ mean?

Knowledge that event B occurred does not change the probability of event A occurring.

If events A and B are​ independent, what must be done to find the probability of event A AND​ B?

Multiply the probability of A and the probability of B.

If 29​% of Americans households own one or more dogs and 43​% own one or more​ cats, then from this​ information, is it possible to find the percentage of households that own a cat OR a​ dog? Why or why​ not?

No, because the event of owning a dog and the event of owning a cat are not mutually exclusive.​ Therefore, to find the percentage of people that own a cat or a​ dog, it is necessary to know the percentage of people that own a cat and a dog.

Statistics and probability use the​ "inclusive OR". This means that referring to outcomes A OR B is referring to​ what?

Outcomes that are only in​ A, only in​ B, or in both

Probabilities are always numbers between and including what​ numbers?

0 and 1

Betty and Jane are gambling. They are cutting cards​ (picking a random place in the deck to see a​ card). Whichever one has the higher card wins the bet. If the cards have the same​ value, they try again. Betty and Jane do this 100 times. Tom and Bill are doing the same thing but only betting 10 times. Is it Bill or Betty who is more likely to end up having very close to​ 50% wins? Explain.

Betty is more likely to end up having close to​ 50% wins as she is betting more times and the Law of Large Numbers says that the more times a random experiment is repeated the closer it comes to the true probability.

Variables or events that are not associated are called what?

Independent

Suppose a weather forecaster says the probability that it will rain on Saturday is 29​% and the probability that it will rain on Sunday is 36​%. From this​ information, is it possible to find the probability that it will rain on Saturday or Sunday​ (or both)? Why or why​ not?

No, because the event of raining on Saturday and the event of raining on Sunday are not mutually exclusive.​ Therefore, to find the probability that it will rain on Saturday or​ Sunday, it is necessary to know the probability that it will rain on both Saturday and Sunday.

The table below summarizes results from a survey that asked about political party affiliation and​ self-described political orientation.​ (Dem means​ Democrat, and Rep means​ Republican.) If a person is selected at​ random, is the event that he or she is a Republican independent of the event that he or she is liberal​?

The event that he or she is a Republican is not independent of the event that he or she is liberal, because the probabilities are not equal.

A single die is rolled. Find the probability of rolling an odd number or a number less than 3.

The probability is 2/3

Assume the only grades possible in a history course are​ A, B,​ C, or lower than C. The probability that a randomly selected student will get an A in the course is 0.40​, the probability that a student will get a B in the course is 0.24​, and the probability that a student will get a C in the course is 0.17. What is the probability that a student will get an A OR a​ B?

The probability that a student will get an A OR a B is 0.64

A friend flips a coin 10 times and says that the probability of getting a head is 60​% because he got six heads. Is the friend referring to an empirical probability or a theoretical​ probability? Explain.

This is an example of empirical probability because it is based on an experiment.

Seat belt use in a state was estimated at 78​%, which means 78​% of people use their seat belts. Suppose two independent drivers have been randomly selected. a. What is the probability that both of them are using a​ seatbelt? b. What is the probability that neither of them is using a​ seatbelt? c. What is the probability that at least one is using a​ seatbelt?

a. The probability that both of them are using a seatbelt is 0.6084. b. The probability that neither of them is using a seatbelt is 0.0484. ​ c. The probability that at least one of them is using a seatbelt is 0.9516. c is the complement of b c+b=1 1-0.0484=0.9516

In most​ cases, it is recommended that at least how many trials be done when using a simulation to estimate a​ probability?

100

If the probability that it will rain tomorrow is​ 0.30, the probability that it will not rain tomorrow is​ what?

0.70

Which of the following is the probability that something in the sample space will​ occur?

1

When two events have no outcomes in​ common, they are called​ what?

Mutually exclusive

The table below summarizes results from a survey that asked about political party affiliation and​ self-described political orientation.​ (Dem means​ Democrat, and Rep means​ Republican.) A person is selected randomly from the sample summarized in the table. We want to find the probability that a liberal person is a Democrat.

P(Democrat | Liberal)

What do we call the law that causes this settling down of the​ proportion?

The law of large numbers

A person was trying to figure out the probability of getting two heads when flipping two coins. He flipped two coins 10 ​times, and in 5 of these 10 ​times, both coins landed heads. On the basis of this​ outcome, he claims that the probability of two heads is 5​/10​, or 50​%. Is this an example of an empirical probability or a theoretical​ probability? Explain.

This is an example of empirical probability because it is based on an experiment.

A Monopoly player claims that the probability of getting a 4 when rolling a​ six-sided die is one sixth because the die is equally likely to land on any of the six sides. Is this an example of a theoretical probability or an empirical​ probability? Explain.

This is an example of theoretical probability because it is not based on an experiment.

Consider the following categories of​ people, assuming that we are talking about all the people in a certain country. Category​ 1: People who own a cat Category​ 2: People who own a dog Category​ 3: People who own a cat OR own a dog Category​ 4: People who own a cat AND own a dog a. Which of the four categories has the most​ people? b. Which category has the fewest​ people?

Which of the four categories has the most​ people? Category​ 3: People who own a cat OR own a dog Which category has the fewest​ people? Category​ 4: People who own a cat AND own a dog


Set pelajaran terkait

NY License Exam - New York Life Insurance Laws

View Set

Zkouška z genetiky - formální genetika

View Set

Ch. 5 - Competitive Advantage, Firm Performance, and Business Models

View Set

RELI 1311 Final Exam Review Guide

View Set

Chapter 11: Inflammation and Wound Healing

View Set