Water Cycle

Lakukan tugas rumah & ujian kamu dengan baik sekarang menggunakan Quizwiz!

Springs

A spring is any natural situation where water flows from an aquifer to the Earth's surface. It is a component of the hydrosphere.

Advection

In physics, engineering, and earth sciences, advection is the transport of a substance by bulk motion. The properties of that substance are carried with it. Generally the majority of the advected substance is a fluid. The properties that are carried with the advected substance are conserved properties such as energy. An example of advection is the transport of pollutants or silt in a river by bulk water flow downstream. Another commonly advected quantity is energy or enthalpy. Here the fluid may be any material that contains thermal energy, such as water or air. In general, any substance or conserved, extensive quantity can be advected by a fluid that can hold or contain the quantity or substance

Subsurface flow

In the water cycle, when precipitation falls on the earth's land, some of the water flows on the surface forming streams and rivers. The remaining water, through infiltration, penetrates the soil traveling underground, hydrating the vadose zone soil, recharging aquifers, with the excess flowing in subsurface runoff. In hydrogeology it is measured by the Groundwater flow equation.

Residence Time

Lake retention time (also called the residence time of lake water, or the water age or flushing time) is a calculated quantity expressing the mean time that water (or some dissolved substance) spends in a particular lake. At its simplest, this figure is the result of dividing the lake volume by the flow in or out of the lake. It roughly expresses the amount of time taken for a substance introduced into a lake to flow out of it again. The retention time is especially important where pollutants are concerned.

Runoff

also known as overland flow) is the flow of water that occurs when excess stormwater, meltwater, or other sources flows over the Earth's surface. This might occur because soil is saturated to full capacity, because rain arrives more quickly than soil can absorb it, or because impervious areas (roofs and pavement) send their runoff to surrounding soil that cannot absorb all of it. Surface runoff is a major component of the water cycle. It is the primary agent in soil erosion by water

Water Cycle

also known as the hydrological cycle or the hydrologic cycle, describes the continuous movement of water on, above and below the surface of the Earth. The mass of water on Earth remains fairly constant over time but the partitioning of the water into the major reservoirs of ice, fresh water, saline water and atmospheric water is variable depending on a wide range of climatic variables. The water moves from one reservoir to another, such as from river to ocean, or from the ocean to the atmosphere, by the physical processes of evaporation, condensation, precipitation, infiltration, surface runoff, and subsurface flow. In doing so, the water goes through different forms: liquid, solid (ice) and vapor

Precipitation

is any product of the condensation of atmospheric water vapor that falls under gravity.[2] The main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail. Precipitation occurs when a portion of the atmosphere becomes saturated with water vapor, so that the water condenses and "precipitates". Thus, fog and mist are not precipitation but suspensions, because the water vapor does not condense sufficiently to precipitate. Two processes, possibly acting together, can lead to air becoming saturated: cooling the air or adding water vapor to the air. Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers."

Infiltration

is the process by which water on the ground surface enters the soil. Infiltration rate in soil science is a measure of the rate at which soil is able to absorb rainfall or irrigation. It is measured in inches per hour or millimeters per hour. The rate decreases as the soil becomes saturated. If the precipitation rate exceeds the infiltration rate, runoff will usually occur unless there is some physical barrier. It is related to the saturated hydraulic conductivity of the near-surface soil. The rate of infiltration can be measured using an infiltrometer.

Transpiration

is the process of water movement through a plant and its evaporation from aerial parts, such as leaves, stems and flowers. Water is necessary for plants but only a small amount of water taken up by the roots is used for growth and metabolism. The remaining 97-99.5% is lost by transpiration and guttation.[1] Leaf surfaces are dotted with pores called stomata, and in most plants they are more numerous on the undersides of the foliage. The stomata are bordered by guard cells and their stomatal accessory cells (together known as stomatal complex) that open and close the pore.[2] Transpiration occurs through the stomatal apertures, and can be thought of as a necessary "cost" associated with the opening of the stomata to allow the diffusion of carbon dioxide gas from the air for photosynthesis. Transpiration also cools plants, changes osmotic pressure of cells, and enables mass flow of mineral nutrients and water from roots to shoots. Two major factors influence the rate of water flow from the soil to the roots: the hydraulic conductivity of the soil and the magnitude of the pressure gradient through the soil. Both of these factors influence the rate of bulk flow of water moving from the roots to the stomatal pores in the leaves via the xylem

Sublimation

is the transition of a substance directly from the solid to the gas phase without passing through the intermediate liquid phase.[1] Sublimation is an endothermic phase transition that occurs at temperatures and pressures below a substance's triple point in its phase diagram. The reverse process of sublimation is deposition or desublimation, in which a substance passes directly from a gas to a solid phase.[2] Sublimation has also been used as a generic term to describe a solid-to-gas transition (sublimation) followed by a gas-to-solid transition (deposition)

Canopy interception

refers to precipitation that does not reach the soil, but is instead intercepted by the leaves, branches of plants and the forest floor. It occurs in the canopy (i.e. canopy interception), and in the forest floor or litter layer (i.e. forest floor interception [2]). Because of evaporation, interception of liquid water generally leads to loss of that precipitation for the drainage basin, except for cases such as fog interception.

Groundwater Storage

regulatory storage-type aquifer recovery and storage systems which when water is injected into it gives the right to withdraw the water later on.

Condensation

the change of the physical state of matter from gas phase into liquid phase, and is the reverse of evaporation. The word most often refers to the water cycle.[1] It can also be defined as the change in the state of water vapour to liquid water when in contact with a liquid or solid surface or cloud condensation nuclei within the atmosphere. When the transition happens from the gaseous phase into the solid phase directly, the change is called deposition (or desublimation, see Sublimation (phase transition))

Evaporation

type of vaporization of a liquid that occurs from the surface of a liquid into a gaseous phase that is not saturated with the evaporating substance. The other type of vaporization is boiling, which is characterized by bubbles of saturated vapor forming in the liquid phase. Steam produced in a boiler is another example of evaporation occurring in a saturated vapor phase. Evaporation that occurs directly from the solid phase below the melting point, as commonly observed with ice at or below freezing or moth crystals (napthalene or paradichlorobenzene), is called sublimation. On average, a fraction of the molecules in a glass of water have enough heat energy to escape from the liquid. The reverse also happens — water molecules from the air enter the water in the glass — but as long as the relative humidity of the air in contact is less than 100% (i.e., saturation), the net transfer of water molecules will be to the air. The water in the glass will be cooled by the evaporation until an equilibrium is reached where the air supplies the amount of heat removed by the evaporating water. In an enclosed environment the water would evaporate until the air is saturated. With sufficient temperature, the liquid would turn into vapor quickly (see boiling point). When the molecules collide, they transfer energy to each other in varying degrees, based on how they collide. Sometimes the transfer is so one-sided for a molecule near the surface that it ends up with enough energy to "escape" and enter the surrounding air. Evaporation is an essential part of the water cycle. The sun (solar energy) drives evaporation of water from oceans, lakes, moisture in the soil, and other sources of water. In hydrology, evaporation and transpiration (which involves evaporation within plant stomata) are collectively termed evapotranspiration. Evaporation of water occurs when the surface of the liquid is exposed, allowing molecules to escape and form water vapor; this vapor can then rise up and form clouds.


Set pelajaran terkait

7.2 Economic sectors and patterns.

View Set

Chapter 34: Care of Patients with Dysrhythmias

View Set

Chapter 17-Monopolistic Competition

View Set

Accounting 1 Chapter 4 Review T/F

View Set

Everfi Startup to IPO Post-Assessment

View Set