Cell Phsy Exam #3

Ace your homework & exams now with Quizwiz!

Which of the following statements about molecular switches is false? (a) Phosphatases remove the phosphate from GTP on GTP-binding proteins, turning them off. (b) Protein kinases transfer the terminal phosphate from ATP onto a protein. (c) Serine/threonine kinases are the most common types of protein kinase. (d) A GTP-binding protein exchanges its bound GDP for GTP to become activated.

(a) Phosphatases remove the phosphate from GTP on GTP-binding proteins, turning them off.

When Ras is activated, cells will divide. A dominant-negative form of Ras clings too tightly to GDP. You introduce a dominant-negative form of Ras into cells that also have a normal version of Ras. Which of the following statements is true? (a) The cells you create will divide less frequently than normal cells in response to the extracellular signals that typically activate Ras. (b) The cells you create will run out of the GTP necessary to activate Ras. (c) The cells you create will divide more frequently compared to normal cells in response to the extracellular signals that typically activate Ras. (d) The normal Ras in the cells you create will not be able to bind GDP because the dominant-negative Ras binds to GDP too tightly.

(a) The cells you create will divide less frequently than normal cells in response to the extracellular signals that typically activate Ras.

Which of the following mechanisms is not directly involved in inactivating an activated RTK? (a) dephosphorylation by serine/threonine phosphatases (b) dephosphorylation by protein tyrosine phosphatases (c) removal of the RTK from the plasma membrane by endocytosis (d) digestion of the RTK in lysosomes

(a) dephosphorylation by serine/threonine phosphatases

Which of the following statements is true? (a) Because endocrine signals are broadcast throughout the body, all cells will respond to the hormonal signal. (b) The regulation of inflammatory responses at the site of an infection is an example of paracrine signaling. (c) Paracrine signaling involves the secretion of signals into the bloodstream for distribution throughout the organism. (d) The axons of neurons typically signal target cells using membrane-bound signaling molecules that act on receptors in the target cells.

(b) The regulation of inflammatory responses at the site of an infection is an example of paracrine signaling.

The growth factor RGF stimulates proliferation of cultured rat cells. The receptor that binds RGF is a receptor tyrosine kinase called RGFR. Which of the following types of alteration would be most likely to prevent receptor dimerization? (a) a mutation that increases the affinity of RGFR for RGF (b) a mutation that prevents RGFR from binding to RGF (c) changing the tyrosines that are normally phosphorylated on RGFR dimerization to alanines (d) changing the tyrosines that are normally phosphorylated on RGFR dimerization to glutamic acid

(b) a mutation that prevents RGFR from binding to RGF

The activation of the serine/threonine protein kinase Akt requires phosphoinositide 3-kinase (PI 3-kinase) to _________. (a) activate the RTK. (b) create phosphorylated lipids that serve as docking sites that localize Akt to the plasma membrane. (c) directly phosphorylate Akt. (d) to create DAG.

(b) create phosphorylated lipids that serve as docking sites that localize Akt to the plasma membrane.

When a signal needs to be sent to most cells throughout a multicellular organism, the signal most suited for this is a ___________. (a) neurotransmitter. (b) hormone. (c) dissolved gas. (d) scaffold.

(b) hormone.

Which of the following statements is false? (a) Nucleotides and amino acids can act as extracellular signal molecules. (b) Some signal molecules can bind directly to intracellular proteins that bind DNA and regulate gene transcription. (c) Some signal molecules are transmembrane proteins. (d) Dissolved gases such as nitric oxide (NO) can act as signal molecules, but because they cannot interact with proteins they must act by affecting membrane lipids.

(d) Dissolved gases such as nitric oxide (NO) can act as signal molecules, but because they cannot interact with proteins they must act by affecting membrane lipids.

Which of the following statements about G-protein-coupled receptors (GPCRs) is false? (a) GPCRs are the largest family of cell-surface receptors in humans. (b) GPCRs are used in endocrine, paracrine, and neuronal signaling. (c) GPCRs are found in yeast, mice, and humans. (d) The different classes of GPCR ligands (proteins, amino acid derivatives, or fatty acids) bind to receptors with different numbers of transmembrane domains.

(d) The different classes of GPCR ligands (proteins, amino acid derivatives, or fatty acids) bind to receptors with different numbers of transmembrane domains.

During nervous-system development in Drosophila, the membrane-bound protein Delta acts as an inhibitory signal to prevent neighboring cells from developing into neuronal cells. Delta is involved in ______________ signaling. (a) endocrine (b) paracrine (c) neuronal (d) contact-dependent

(d) contact-dependent

All members of the steroid hormone receptor family __________________. (a) are cell-surface receptors. (b) do not undergo conformational changes. (c) are found only in the cytoplasm. (d) interact with signal molecules that diffuse through the plasma membrane.

(d) interact with signal molecules that diffuse through the plasma membrane.

The length of time a G protein will signal is determined by _______. (a) the activity of phosphatases that turn off G proteins by dephosphorylating Gα. (b) the activity of phosphatases that turn GTP into GDP. (c) the degradation of the G protein after Gαseparates from Gβγ (d) the GTPase activity of Gα

(d) the GTPase activity of Gα

Name the three main classes of cell-surface receptor.

ion-channel-coupled receptors; G-protein-coupled receptors; enzyme-coupled receptors

Which of the following statements is true? (a) Extracellular signal molecules that are hydrophilic must bind to a cell-surface receptor so as to signal a target cell to change its behavior. (b) To function, all extracellular signal molecules must be transported by their receptor across the plasma membrane into the cytosol. (c) A cell-surface receptor capable of binding only one type of signal molecule can mediate only one kind of cell response. (d) Any foreign substance that binds to a receptor for a normal signal molecule will always induce the same response that is produced by that signal molecule on the same cell type.

(a) Extracellular signal molecules that are hydrophilic must bind to a cell-surface receptor so as to signal a target cell to change its behavior.

Acetylcholine is a signaling molecule that elicits responses from heart muscle cells, salivary gland cells, and skeletal muscle cells. Which of the following statements is false? (a) Heart muscle cells decrease their rate and force of contraction when they receive acetylcholine, whereas skeletal muscle cells contract. (b) Heart muscle cells, salivary gland cells, and skeletal muscle cells all express an acetylcholine receptor that belongs to the transmitter-gated ion channel family. (c) Active acetylcholine receptors on salivary gland cells and heart muscle cells activate different intracellular signaling pathways. (d) Heart muscle cells, salivary gland cells, and skeletal muscle cells all respond to acetylcholine within minutes of receiving the signal.

(b) Heart muscle cells, salivary gland cells, and skeletal muscle cells all express an acetylcholine receptor that belongs to the transmitter-gated ion channel family.

Which of the following statements is true? (a) MAP kinase is important for phosphorylating MAP kinase kinase. (b) PI 3-kinase phosphorylates a lipid in the plasma membrane. (c) Ras becomes activated when an RTK phosphorylates its bound GDP to create GTP. (d) STAT proteins phosphorylate JAK proteins, which then enter the nucleus and activate gene transcription.

(b) PI 3-kinase phosphorylates a lipid in the plasma membrane.

The lab you work in has discovered a previously unidentified extracellular signal molecule called QGF, a 75,000-dalton protein. You add purified QGF to different types of cells to determine its effect on these cells. When you add QGF to heart muscle cells, you observe an increase in cell contraction. When you add it to fibroblasts, they undergo cell division. When you add it to nerve cells, they die. When you add it to glial cells, you do not see any effect on cell division or survival. Given these observations, which of the following statements is most likely to be true? (a) Because it acts on so many diverse cell types, QGF probably diffuses across the plasma membrane into the cytoplasm of these cells. (b) Glial cells do not have a receptor for QGF. (c) QGF activates different intracellular signaling pathways in heart muscle cells, fibroblasts, and nerve cells to produce the different responses observed. (d) Heart muscle cells, fibroblasts, and nerve cells must all have the same receptor for QGF.

(c) QGF activates different intracellular signaling pathways in heart muscle cells, fibroblasts, and nerve cells to produce the different responses observed.

The following happens when a G-protein-coupled receptor activates a G protein. (a) The β subunit exchanges its bound GDP for GTP. (b) The GDP bound to the α subunit is phosphorylated to form bound GTP. (c) The α subunit exchanges its bound GDP for GTP. (d) It activates the α subunit and inactivates the βγ complex.

(c) The α subunit exchanges its bound GDP for GTP.

The growth factor Superchick stimulates the proliferation of cultured chicken cells. The receptor that binds Superchick is a receptor tyrosine kinase (RTK), and many chicken tumor cell lines have mutations in the gene that encodes this receptor. Which of the following types of mutation would be expected to promote uncontrolled cell proliferation? (a) a mutation that prevents dimerization of the receptor (b) a mutation that destroys the kinase activity of the receptor (c) a mutation that inactivates the protein tyrosine phosphatase that normally removes the phosphates from tyrosines on the activated receptor (d) a mutation that prevents the binding of the normal extracellular signal to the receptor

(c) a mutation that inactivates the protein tyrosine phosphatase that normally removes the phosphates from tyrosines on the activated receptor

The local mediator nitric oxide stimulates the intracellular enzyme guanylyl cyclase by ________________. (a) activating a G protein. (b) activating a receptor tyrosine kinase. (c) diffusing into cells and stimulating the cyclase directly. (d) activating an intracellular protein kinase.

(c) diffusing into cells and stimulating the cyclase directly.

Foreign substances like nicotine, morphine, and menthol exert their initial effects by _____. (a) killing cells immediately, exerting their physiological effects by causing cell death. (b) diffusing through cell plasma membranes and binding to transcription factors to change gene expression. (c) interacting with cell-surface receptors, causing the receptors to transduce signal inappropriately in the absence of the normal stimulus. (d) removing cell-surface receptors from the plasma membrane.

(c) interacting with cell-surface receptors, causing the receptors to transduce signal inappropriately in the absence of the normal stimulus.

A protein kinase can act as an integrating device in signaling if it ___________________. (a) phosphorylates more than one substrate. (b) catalyzes its own phosphorylation. (c) is activated by two or more proteins in different signaling pathways. (d) initiates a phosphorylation cascade involving two or more protein kinases.

(c) is activated by two or more proteins in different signaling pathways.

Receipt of extracellular signals can change cell behavior quickly (for example, in seconds or less) or much more slowly (for example, in hours). A. What kind of molecular changes could cause quick changes in cell behavior? B. What kind of molecular changes could cause slow changes in cell behavior? C. Explain why the response you named in A results in a quick change, whereas the response you named in B results in a slow change.

A. Any answer that involves the modification of existing cell components is correct. Protein phosphorylation, protein dephosphorylation, protein ubiquitylation, lipid phosphorylation, and lipid cleavage are all examples of correct answers. B. Responses that involve alterations in gene expression occur slowly. C. Modification of existing cell components can happen quickly, whereas responses that depend on changes in gene expression take much longer, because the genes will need to be transcribed, the mRNAs will need to be translated, and the proteins need to accumulate to high-enough levels to instigate change.

Circle the phrase in each pair that is likely to occur more rapidly in response to an extracellular signal. A. changes in cell secretion / increased cell division B. changes in protein phosphorylation / changes in proteins being synthesized C. changes in mRNA levels / changes in membrane potential

A. changes in cell secretion B. changes in protein phosphorylation C. changes in membrane potential

Can signaling via a steroid hormone receptor lead to amplification of the original signal? If so, how?

Because the interactions of the signal molecule with its receptor and of the activated receptor with its gene are both one-to-one, there is no amplification in this part of the signaling pathway. The signal can, however, be amplified when the target genes are transcribed, because each activated gene produces multiple copies of mRNA, each of which is used to make multiple copies of the protein that the gene encodes.


Related study sets

All sample Questions 13A, 14, 15, 19, 13B, 14B, 16, 17

View Set

Tracy the Turtle- Unit 1 Computer science

View Set

Chapter 2: Stars and the Moon (RQs)

View Set

STUPID ASS MARINE FOOKIN BIO MIDTERM

View Set

Ch.3A Exam - Life Insurance Policies: Provisions, Options and Riders

View Set

Quiz 12, Chapter 12, Python CS 119

View Set

Custom: NUR 204 ATI Health Promotion Ch. 16-31

View Set