Immunology Exam 1 MC, T/F Quiz Questions

Ace your homework & exams now with Quizwiz!

True/False: The C3 convertase amplifies the process of complement activation by generating large amounts of C3b and cleaving large numbers of C5 molecules.

False

True/False: The acute phase response contributes to infection control by producing molecules that promote pathogen opsonization and complement activation. This response is only induced by direct action of microbial components on hepatocytes in the liver.

False

True/False: The antibody protein has two functional domains, one for antigen binding and a second to confer specific effector functions. These two functional domains are encoded by the antibody light chain and antibody heavy chain polypeptides, respectively.

False

True/False: The classical and lectin pathways of complement activation converge at the step of C3 activation. However, the initiating steps of each pathway use protein components and enzymatic mechanisms that share no similarity with each other.

False

True/False: All mammalian TLRs have been shown to directly bind to microbial products, leading to TLR signaling.

False

True/False The inflammatory response is characterized by four classic symptoms: heat, redness, pain, and swelling. In some instances, this response can be triggered by stimuli that are non-infectious such as asbestos, a process known as 'sterile inflammation.' When exposure to the stimulating trigger is persistent, a state of chronic inflammation can result. This process is likely to be detrimental to the health of the host.

True

True/False: Antibody binding to a pathogen surface is greatly enhanced when both antigen-binding sites of the antibody are engaged at once, a feature known as bivalent binding. It is possible for antibodies to bind bivalently to a wide variety of components on many different pathogen surfaces due to the flexibility in the protein at the hinge region and at the V-C junction.

True

True/False: Dendritic cells are tissue resident myeloid cells that are highly phagocytic, like macrophages. However, dendritic cells do not play a major role in large-scale pathogen destruction; instead, they are important in initiating adaptive immune responses of T cells.

True

True/False: In the absence of an infection, most granulocytes (neutrophils, eosinophils, basophils) are found circulating in the blood, whereas other subsets of myeloid cells reside in tissues.

True

True/False: One factor that contributes to the enhanced secondary response to an antigen is the increased number of antigen-specific lymphocytes present after the primary response; these are known as memory cells.

True

B cells express a complement receptor that binds to C3b cleavage products, such as iC3b and C3dg. When a B cell with an antigen receptor that specifically recognizes that pathogen also has its complement receptor stimulated because the pathogen is opsonized with these C3 fragments, B cell activation is greatly enhanced. Due to this mechanism, B cells can be activated by much lower concentrations of antigen (in this case, the pathogen) than if the antigen is devoid of complement components. This mechanism functions to: A. Ensure that pathogens are readily detected by the adaptive immune system before they replicate to high levels in the host B. Prevent B cells from being activated in response to antigens that are not pathogens C. Allow B cells to phagocytose the pathogen and help destroy it D. Induce increased rounds of B cell replication to make more pathogen-specific B cells E. Allow the B cell to block pathogen replication by interfering with multiple pathogen surface functions

A. Ensure that pathogens are readily detected by the adaptive immune system before they replicate to high levels in the host

When macrophages in a tissue encounter bacteria, they release cytokines that induce an inflammatory response. These cytokines act on other immune cells, to recruit them to the site of infection and to enhance their activities. In addition, these cytokines act on the endothelial cells of the blood vessel wall to: A. Increase their permeability, allowing fluid and proteins to leak into the tissue B. Solidify the tight junctions to prevent the bacteria from entering the blood C. Proliferate, allowing the blood vessel to enlarge D. Up-regulate microbicidal mechanisms, so they can kill bacteria E. Secrete anti-microbial peptides

A. Increase their permeability, allowing fluid and proteins to leak into the tissue

Chemokines such as CXCL8 have a key role in the rapid recruitment of neutrophils to the site in the tissue containing the focus of an infection. In this response, CXCL8 has two different functions. In addition to inducing integrin activation on the neutrophil, CXCL8 also functions to: A. Induce directional migration of the neutrophil in the tissue B. Induce increased expression of P-selectin and E-selectin on the endothelium C. Induce increased expression of integrins on the neutrophil surface D. Induce blood vessel dilation and fluid leakage into the infected tissue E. Induce increased phagocytic activity by the neutrophil

A. Induce directional migration of the neutrophil in the tissue

Secondary (or peripheral) lymphoid organs are sites for initiation of adaptive immune responses. Given the rarity of lymphocytes specific for any given antigen and the vast amount of body tissue that must be protected, the system of secondary lymphoid tissues is efficient because: A. It concentrates antigens in centralized locations for rare lymphocytes to encounter B. It provides the optimal environment for the rapid proliferation of lymphocytes C. It traps the pathogens and antigens in a contained environment so they cannot spread to other tissues in the body D. It helps the innate immune cells eliminate the infection by using lymphatic fluid to drain pathogens from the infected tissue E. It filters the lymph fluid and removes pathogenic organisms before they can enter the bloodstream

A. It concentrates antigens in centralized locations for rare lymphocytes to encounter

When stimulated by binding to bacterial products, the fMet-Leu-Phe (fMLF) receptor triggers multiple responses by phagocytes, including migration and induction of antimicrobial activities. Most of these responses are activated by small GTPases of the Rac and Rho families that are indirectly activated by fMLF receptor stimulation. The fMLF receptor can initiate multiple downstream signaling pathways because: A. It couples to a heterotrimeric G protein that has alpha and beta-gamma subunits with independent activities. B. It couples directly to two different guanine nucleotide exchange factors (GEFs). C. It binds to Rac, Rho, and cdc42 directly. D. It promotes fusion of phagosomes with lysosomes, initiating multiple signals. E. It induces assembly of multiple enzymes from individual cytosolic components.

A. It couples to a heterotrimeric G protein that has alpha and beta-gamma subunits with independent activities.

NK cells can be activated following recognition of a virus-infected cell, if that cell has down-regulated expression of MHC class I proteins on its surface. However, NK cells can also recognize infected cells or tumor cells, even if they still express MHC class I proteins. In this latter case, activating receptors on NK cells are recognizing: A. Molecules on the target cell up-regulated by cellular or metabolic stress B. Cytokines secreted by the virus-infected or tumor cell C. MHC class I-like decoy molecules encoded by the virus D. Mutated self-proteins expressed by the tumor cell E. Double-stranded DNA in the cytoplasm of the infected or tumor cell

A. Molecules on the target cell up-regulated by cellular or metabolic stress

Early studies analyzing the antibody protein fragments generated after proteolytic cleavage revealed important information about the overall structure of the antibody molecule. Which cleavage pattern (indicated by the red triangles in Figure Q4.5) yields a fragment that has the same antigen-binding avidity as the intact antibody, but is unable to activate complement after binding to a pathogen? (SEE IMAGE)

A. SEE IMAGE

In Figure Q4.8, which close-up view of these two V domains has the amino acid sequences most important for antigen-binding highlighted correctly in red? (SEE IMAGE)

A. SEE IMAGE

: The pattern recognition receptors on cells of the innate immune system are genetically encoded, meaning that their sequences and specificities are determined prior to the development of the individual. In contrast, the antigen receptors of B and T lymphocytes arise from a random rearrangement process that occurs differently in each lymphocyte as it develops. One potential problem entailed by the random process that generates lymphocyte antigen receptors is the possibility that: A. Some antigen receptors might recognize the individuals own cells or antigens B. Many lymphocytes might generate antigen receptors that don't recognize anything C. Many lymphocytes might generate antigen receptors that recognize multiple different pathogens D. Some antigen receptors might recognize foreign tissues and lead to graft rejection during organ transplantation E. Some lymphocytes might not generate functional antigen receptor proteins

A. Some antigen receptors might recognize the individuals own cells or antigens

Septic shock is a serious, often fatal response to an infection in the bloodstream. This response can be elicited in mice by intravenous injection of bacterial LPS. However, it was found that one strain of mice, C3H/HeJ, is resistant to LPS- induced shock. This fact was used to clone the gene for TLR-4 based on positional cloning from C3H/HeJ mice. Another example of a strain of mice that is resistant to LPS- induced septic shock is: A. TNF-receptor-deficient mice B. TLR-2-deficient mice. C. LFA-1-deficient mice D. Neutrophil-deficient mice E. Complement receptor-deficient mice

A. TNF-receptor-deficient mice

Signaling through the Drosophila Toll pathway is initiated when pathogen recognition receptors (PRRs) bind to microbial products, such as bacterial peptidoglycan. Aspects of this pathway share similarity to the mammalian complement cascade as well as to the innate recognition system based on TLRs. One feature of Toll signaling that resembles the complement pathway is: A. The activation of an extracellular proteolytic cascade involving cleavage of self-proteins B. The deposition of Toll signaling proteins onto the microbial surface C. The release of soluble fragments of Toll that induce inflammation D. The assembly of a membrane attack complex in the microbial membrane following Toll activation E. The presence of receptors for Toll cleavage products on phagocytic cells to promote pathogen ingestion

A. The activation of an extracellular proteolytic cascade involving cleavage of self-proteins

Stimulation of the nucleic acid sensing TLRs that reside in endosomal membranes induces the production of a different cytokine response than is produced by stimulation of the plasma membrane TLRs. In part, this distinction is based on the different adapter proteins used by the nucleic acid sensing TLRs, leading to the activation of IRF factors. The cytokine response following stimulation of nucleic acid-sensing TLRs is characterized by production of: A. The antiviral cytokine, type I interferon B. TNF-alpha, which induces increased vascular permeability C. Antimicrobial peptides by macrophages D. Chemokines that recruit neutrophils E. The inflammatory complement fragments, C3a and C5a

A. The antiviral cytokine, type I interferon

The importance of complement activation as an innate immune defense against infections is illustrated by: A. The evolution of complement avoidance strategies by many pathogens B. The large number of proteins involved in the complement pathway C. The large number of complement regulatory pathways expressed by the host D. The existence of three different mechanisms for initiating complement activation E. The ability of the membrane attack complex to lyse some pathogens

A. The evolution of complement avoidance strategies by many pathogens

One surprising aspect of the immune system is that individuals make responses to human tissues from a different individual, causing serious problems for organ and tissue transplantation. The basis for this immune response is: A. The extensive polymorphism of MHC genes in the human population B. The fact that transplanted tissues often carry infectious microbes into the recipient C. The fact that individuals may differ in their blood group antigens (i.e., their blood type) D. The presence of many antigen-presenting-cells in the transplanted tissue E. The presence of many B and T lymphocytes in the transplanted tissue

A. The extensive polymorphism of MHC genes in the human population

The majority of vaccines work by eliciting pathogen-specific antibodies that circulate in our bodies and protect us in the event that we are later exposed to that specific pathogen. For most viruses and bacterial toxins that we are vaccinated against, these pre-existing antibodies are protective because: A. They neutralize the virus or toxin, preventing it from attaching to and entering our cells. B. They bind to the virus or toxin and carry it to the liver where it can be degraded. C. They bind to the virus or toxin and directly induce lysis. D. They induce mucus production that helps flush the toxin or virus out of the body. E. They bind to epithelial cells and induce the production of antimicrobial peptides.

A. They neutralize the virus or toxin, preventing it from attaching to and entering our cells.

Although the complement cascade can be initiated by antibodies bound to the surface of a pathogen, complement activation is generally considered to be an innate immune response. This is because: A. Two of the three pathways for complement activation are initiated by constitutively produced recognition molecules that directly interact with microbial surfaces. B. When the complement cascade leads to the formation of a membrane-attack complex, the pathogen is killed. C. Several of the soluble products generated by complement activation lead promote the inflammatory response. D. Complement proteins bound to the pathogen promote uptake and destruction by phagocytic cells. E. The C3 convertase is only produced when complement activation is initiated by antibody binding to a pathogen.

A. Two of the three pathways for complement activation are initiated by constitutively produced recognition molecules that directly interact with microbial surfaces.

Adaptive immune responses are slow to develop, taking days to weeks after exposure to reach their peak. However, these responses are more specific than innate responses, and also generate immunological memory. These latter features, which provide enhanced protection upon re-infection with the same pathogen, are the basis of: A. Vaccines B. Antibiotics C. Systemic shock D. Complement activation E. Phagocytosis

A. Vaccines

Vaccination against many infectious diseases has provided enormous benefit in developed countries, leading to the virtual eradication of diseases such as polio, measles, smallpox, and others. However, efforts to create long-lasting vaccines against some viral infections, like Influenza and HIV, have not been successful to date because: A. Viruses like HIV and Influenza undergo antigenic variation to evade previous immune responses. B. Viruses like HIV and Influenza spread too rapidly in the population for a vaccine to be effective. C. Viruses like HIV and Influenza have RNA, rather than DNA genomes, and are resistant to current vaccine strategies. D. Viruses like HIV and Influenza infect via mucosal surfaces, a route that is not well protected by current vaccine strategies. E. Viruses like HIV and Influenza are transmitted vertically (from mother to child) during fetal development, so babies are infected before they can be vaccinated.

A. Viruses like HIV and Influenza undergo antigenic variation to evade previous immune responses.

Many of the inflammatory mediators produced by tissue macrophages at sites of infection act on the endothelial cells lining the blood vessel walls. An exception to this is (are) the: A. Cytokines that induce increased vascular permeability B. Chemokines that induce directed migration of blood monocytes C. Cytokines that induce increased expression of adhesion molecules D. TNF produced by tissue-resident sensor cells E. Bradykinin produced that causes pain

B. Chemokines that induce directed migration of blood monocytes

Amino acid sequence analysis of all of the peptides found in a single IgG antibody would reveal unique peptide sequences totaling ~600-700 amino acids. Using this estimate, the predicted molecular weight of an antibody protein would be ~70-75 kDa. Yet, an intact antibody protein has a molecular weight of ~150 kDa. The explanation for this discrepancy is: A. IgG antibodies have many more heavy amino acids in them than most other proteins. B. Each IgG antibody is a complex of two identical light chains and two identical heavy chains. C. IgG antibodies tend to aggregate together during purification, thereby distorting molecular weight estimates. D. Each IgG antibody is a complex of four identical polypeptides. E. IgG antibodies are produced as dimers of two identical IgG monomers.

B. Each IgG antibody is a complex of two identical light chains and two identical heavy chains.

The antigen receptor on a T cell recognizes a degraded fragment of a protein (i.e., a peptide) bound to a specialized cell surface peptide-binding receptor called an MHC molecule. One key aspect of this system is that the peptides displayed on MHC molecules can be derived from intracellular proteins. This mode of antigen recognition is particularly important in allowing the adaptive immune response to detect infections by: A. Large helminthic parasites in the gastrointestinal tract B. Intracellular pathogens, such as viruses and some protozoa C. Extracellular bacteria that colonize the lungs D. Fungi that form hyphae in the bronchial airways E. Fungal infections in the skin epithelium

B. Intracellular pathogens, such as viruses and some protozoa

Two strains of mice were infected with 5x10^4 PFU of Influenza A virus, and the survival data shown in Figure Q3.31 were obtained. (FIGURE) Next, both strains were infected again with Influenza A, and levels of type I interferons were measured and found to be similar between the two strains. Likewise, cells from both strains expressed similar levels of the IFN-alpha/beta receptor (IFNAR). Which of the following proteins might be more highly expressed in strain B than in strain A following Influenza A infection? A. MHC class I B. Mx-1 C. TLR4 D. Complement C3 E. ICAM-1

B. Mx-1

The classical complement pathway is initiated by C1q binding to the surface of a pathogen. In some cases, C1q can directly bind the pathogen, for instance by recognizing proteins of bacterial cell walls, but in most cases C1q binds to IgM antibodies that are bound to the pathogen surface. How does this IgM-binding feature of C1q contribute to rapid, innate immune responses rather than to slow, adaptive responses? A. C1q induces B lymphocytes to begin secreting antibody within hours of pathogen exposure. B. Natural antibody that binds to many microbial pathogens is produced prior to pathogen exposure. C. C1q binds to C-reactive protein which then binds to IgM on the pathogen surface. D. C1q directly induces inflammation, recruiting phagocytes and antibodies from the blood into the infected tissue. E. C1q binds to dendritic cells in the infected tissue, inducing them to secrete inflammatory cytokines.

B. Natural antibody that binds to many microbial pathogens is produced prior to pathogen exposure.

Epithelial surfaces provide the first line of defense against infection by the use of several types of mechanisms. One of the chemical mechanisms used by epithelia is: A. Joining of epithelial cells by tight junctions B. Secretion of antimicrobial peptides by epithelial cells C. Production of mucus, tears, or saliva in the nose, eyes, and oral cavity D. Movement of mucus by cilia E. Peristalsis in the gastrointestinal tract

B. Secretion of antimicrobial peptides by epithelial cells

Several subsets of innate lymphoid cells (ILCs) have been identified that share their patterns of cytokine production with the known subsets of T cells. The combined activity of related ILC and T cell subsets is effective in eradicating pathogenic infections because: A. ILCs cannot kill the pathogen, whereas the antigen-specific T cells can kill the pathogen. B. The early response of ILCs that reside at the site of infection is followed by the later more robust response of pathogen-specific T cells that migrate to the site of infection. C. The ILCs activate B cells to induce antibody responses whereas the T cells are able to directly eliminate the pathogen. D. The ILCs are induced to migrate from the site of infection to the draining lymph nodes where they activate the antigen-specific T cells. E. The ILCs are activated to secrete antimicrobial compounds which cause them to lyse, releasing RNA and DNA that act on T cells to stimulate T cell cytotoxic activities.

B. The early response of ILCs that reside at the site of infection is followed by the later more robust response of pathogen-specific T cells that migrate to the site of infection.

Inherited immunodeficiency diseases result from a single gene defect in one component of the immune system. By identifying the class of microbial pathogens a given immunodeficient individual becomes susceptible to, studies of these diseases indicate: A. Which type of antibiotics each patient should be given B. The essential immune mechanism required for resistance to each category of pathogen C. Whether the disease is a genetically inherited or an acquired form of immunodeficiency D. Whether the immunodeficiency disease is likely to be transmitted to another individual E. Whether the disease is likely to be life-threatening or not

B. The essential immune mechanism required for resistance to each category of pathogen

Some Pattern Recognition Receptors (PRRs) recognize nucleic acids, like RNA or DNA. Since our own cells contain human RNA and DNA, the activation of innate immune pathways by these PRRs must rely on additional criteria to discriminate self from nonself. Additional criteria include everything EXCEPT: A. The subcellular location of the RNA B. The presence of adenosine residues in viral RNA C. The methylation state of the DNA D. Unique structures found on viral RNA E. The subcellular location of the DNA

B. The presence of adenosine residues in viral RNA

Multiple pathways for regulating complement activation limit the potential damage caused by complement deposition on host cells or caused by the spontaneous activation of complement proteins in the plasma. Genetic deficiencies in these mechanisms often lead to chronic inflammatory diseases, but in some cases can paradoxically lead to increased susceptibility to bacterial infections. This latter outcome may occur because: A. Complement regulatory proteins have dual functions in inhibiting and promoting complement activation. B. Uncontrolled complement activation leads to the depletion of serum complement proteins. C. The inhibition of the membrane attack complex by complement regulatory proteins normally leads to enhanced activation of the early steps of the complement pathway. D. Complement regulatory proteins normally cause the rapid depletion of plasma complement factors. E. Uncontrolled complement activation recruits the majority of phagocytic cells, leaving few remaining to fight infections in the tissues.

B. Uncontrolled complement activation leads to the depletion of serum complement proteins.

Antibodies, complement proteins, and phagocytic cells provide effective protection against all of the following types of infections in Figure Q2.1, except (SEE FIGURE): A. Fungi B. Virus-infected cell C. Worms D. Bacteria E. Viruses

B. Virus-infected cell

To identify genes encoding the receptors for the cytokines IL-2, IL-4, and IL-7, an siRNA screen is performed using purified T lymphocytes. To identify siRNAs that knock-down cytokine receptor expression, the T cells have been transfected with a construct that produces green fluorescent protein (GFP) when any one of these three cytokines is used to stimulate the cells. When the screen is completed, several different siRNAs have been identified that substantially reduce the T cells ability to respond to these cytokines as shown in Figure Q3.22. A correct statement regarding these data is: A. siRNA-1 and siRNA-3 target subunits of the IL-2 receptor but siRNA-2 does not. B. siRNA-2 targets a shared subunit of all three receptors, whereas siRNA-1 and siRNA-3 do not. C. siRNA-3 targets a subunit of the IL-7 receptor, but the other two siRNAs do not. D. siRNA-2 and siRNA-3 do not target a subunit of the IL-2 receptor. E. siRNA-2 targets a subunit shared by all receptors in the hematopoietin receptor superfamily.

B. siRNA-2 targets a shared subunit of all three receptors, whereas siRNA-1 and siRNA-3 do not.

NK cells express receptors from several families, each of which has multiple members. Some of these receptors are activating and others are inhibitory, and NK cell activation is dependent on the balance of signaling overall. The individual NK cells in an individual: A. Always express a majority of activating versus inhibitory receptors B. Are more potent effectors of cytotoxicity than of cytokine-production C. Each express only a subset of all possible NK receptors D. Are not considered members of the innate lymphoid cell lineage E. Undergo massive proliferation in response to infection, similar to T lymphocytes

C. Each express only a subset of all possible NK receptors

Pathogenic infections induce damage to the host by a variety of mechanisms. While many mechanisms are direct effects of the pathogen, some damaging mechanisms result from the immune response to the infection, as illustrated in Figure Q2.2. Examples of damage caused by the host immune response are: (SEE FIGURE) A. Exotoxin production, Endotoxin B. Cell-mediated immunity, Direct cytopathic effect C. Endotoxin, Immune Complexes D. Direct cytopathic effect, Endotoxin E. Cell-mediated immunity, Immune complexes

C. Endotoxin, Immune Complexes

Even when the complement cascade fails to proceed beyond generating the C3 convertase, complement activation is effective at inducing pathogen uptake and destruction. This process of immune protection is mediated by: A. Activation of complement inhibitory receptors on phagocytes that promote pathogen uptake B. Activation of soluble proteases in the serum that disrupt pathogen membranes C. Engagement of complement receptors on phagocytes by C3b and its cleavage products which promotes phagocytosis D. Engagement of complement receptors on B cells that promotes antibody production E. Stimulation of antimicrobial peptide secretion by phagocytes

C. Engagement of complement receptors on phagocytes by C3b and its cleavage products which promotes phagocytosis

Patients with recurrent infections of Neisseria meningitidis, an extracellular bacterial pathogen that causes meningitis, were examined to determine the underlying cause of their immunodeficiency. A subset of these patients were found to have defects in complement activation on the bacterial surface, a process that for this bacterium is dominated by alternative complement activation leading to C3b deposition on the pathogen surface. When neutrophils from these patients were examined in vitro, the results in Figure Q2.19 were obtained. Based on these data, the identity of the green neutrophil mediator in Figure Q2.19 is likely to be: A. Complement factor B B. The C3 convertase C. Factor P (properdin) D. C3b E. Mannose-binding lectin (MBL)

C. Factor P (properdin)

Lymph nodes function as meeting points between antigen-bearing dendritic cells arriving from the tissue and recirculating B and T lymphocytes. Whereas the dendritic cells coming from the tissue enter the lymph node via the afferent lymphatic vessels, the recirculating lymphocytes enter the lymph node: A. Also from the lymph fluid draining the tissue B. Directly from their primary lymphoid organ where they develop C. From the blood by crossing the high endothelial venules D. By being trapped in the lymphoid follicle by resident macrophages E. By being carried there by dendritic cells

C. From the blood by crossing the high endothelial venues

Unlike B lymphocytes, T lymphocytes do not generate a secreted form of their antigen receptor after they are activated and proliferate. This is because the effector functions of T cells are restricted to: A. Responses important in protozoan infections, but not other types of infections B. Interactions with large helminthic parasites, which cannot be phagocytosed C. Interactions with other cells, such as virus-infected cells or other immune cells D. Responses important in mucosal surfaces (e.g., the lung), where antibodies cannot go E. Stimulating B cells and not any other types of cells

C. Interactions with other cells, such as virus-infected cells or other immune cells

The skin and bodily secretions provide the first line of defense against infection. One response in this category that is common during upper respiratory virus infections is: A. Production of antibodies B. Infiltration by white blood cells C. Mucus production D. Increased saliva production E. Fever

C. Mucus production

Both MHC class I and MHC class II molecules are highly polymorphic genes in the human population, with tens to hundreds of different alleles co-existing in the population. This means that a comparison of the MHC protein sequences between two individuals would reveal amino acid differences between one individual and the next. However, these amino acid differences are not randomly distributed along the entire protein, but are clustered in certain locations. The diagram in Figure Q4.16 that most correctly indicates the regions of greatest variability between different MHC proteins (shown by the red highlights) is: (SEE IMAGE)

C. SEE IMAGE

The drawing in Figure Q4.12 shows antibodies bound to repetitive epitopes on the surface of a bacterial pathogen. Even though all of these epitopes are identical, not all of them have antibodies bound to them. (SEE IMAGE) The most likely explanation for this failure of antibodies to bind to every possible epitope on the surface of the pathogen is: A. There is an insufficient amount of antibody to saturate all the epitopes. B. The pathogen has an immune evasion strategy to avoid antibody binding to all epitopes. C. Some of the epitopes cannot bind antibody due to steric hindrance. D. The antibodies are only able to bind when both antigen-binding sites are engaged on the pathogen surface. E. The epitopes on the pathogen are not all in the same conformation, so not all will bind the same antibody.

C. Some of the epitopes cannot bind antibody due to steric hindrance.

Streptococcus pneumoniae is a Gram-positive bacterium that colonizes the mucosal surface of the upper respiratory tract in humans. The presence of this bacterium in the nose and throat is widespread in the population, and in most people, colonization with Strep. pneumoniae is asymptomatic. Figure Q2.7 shows a comparison of in vitro growth curves of the wild-type strain of Strep. pneumoniae, as well as a Strep. pneumoniae mutant strain with a defect in one bacterial gene. The graph on the right shows the growth curve following addition of lysozyme during the logarithmic phase of bacterial growth. Which statement could account for the data in these graphs? (IMAGE) A. Strain B is wild-type Strep. pneumoniae, and strain A is a mutant that cannot modify its peptidoglycan to be lysozyme-resistant. B. Strain B is wild-type Strep. pneumoniae, and strain A is a mutant that that expresses increased levels of LPS. C. Strain A is wild-type Strep. pneumoniae, and strain B is a mutant that cannot modify its peptidoglycan to be lysozyme-resistant. D. Strain A is wild-type Strep. pneumoniae, and strain B is a mutant that secretes an enzyme that inactivates lysozyme. E. Strain A is wild-type Strep. pneumoniae, and strain B is a mutant that cannot grow well in vitro.

C. Strain A is wild-type Strep. pneumoniae, and strain B is a mutant that cannot modify its peptidoglycan to be lysozyme-resistant.

The antibody surface involved in antigen binding varies depending on the size and nature of the antigen. This surface can be concave or flat, and sometimes, can have extended protrusions. This is accomplished by: A. Flexibility in the hinge regions of the antibody allowing rotation of the antigen-binding sites B. Some antibodies using V region framework sequences instead of the CDRs to bind antigen C. The ability of different CDR sequences to form many structurally distinct shapes and surfaces D. The ability of the same heavy chain to pair with different light chains E. The differential usage of κ versus λ light chains, as κ chains form concave binding sites whereas λ chains make flatter surfaces

C. The ability of different CDR sequences to form many structurally distinct shapes and surfaces

Cytokine receptors of the hematopoietin superfamily engage signaling pathways that begin with JAK kinases and lead to activation of STAT-family transcription factors. Each receptor subunit in this superfamily binds a specific JAK kinase (one of four members) and each receptor complex usually activates one major STAT homodimer (one of seven). The specificity for activation of one STAT homodimer by each cytokine is determined by: A. The specificity of each JAK kinase for only phosphorylating one or two out of the seven possible STAT members B. The specificity of each cytokine receptor complex to only activate one of the four Jak kinase members, which then homodimerizes C. The amino acid sequence surrounding the phosphorylated tyrosine on each cytokine receptor subunit's cytoplasmic tail D. The expression of only one STAT member in each type of immune cell, depending on which cytokine receptors are expressed E. The inhibition of all but one STAT protein by the inhibitor SOCS proteins expressed in each cell type

C. The amino acid sequence surrounding the phosphorylated tyrosine on each cytokine receptor subunit's cytoplasmic tail

The best evidence supporting the concept of immunological memory is: A. The increased numbers of antigen receptors expressed by lymphocytes after primary exposure to an antigen B. The increased levels of cytokines made by lymphocytes after primary exposure to an antigen C. The increased rapidity and magnitude of the secondary response to the same antigen D. The increased swelling of lymph nodes during the secondary response to the same antigen E. The long lifespan of vertebrates, which would be impossible without immunological memory

C. The increased rapidity and magnitude of the secondary response to the same antigen

Dendritic cells in the skin, known as Langerhans cells, express very high levels of the NOD-like receptor, NLRP3. Previous studies showed that treatment of these cells with the Staphylococcus aureus pore-forming toxin causes K+ efflux from the cells. To investigate whether this signal could induce IL-1 (an inflammatory cytokine) secretion by the cells, the following study (Figure Q3.16) was performed: The explanation for these results is: A. NLRP3 is not activated by K+ efflux from the cells. B. The S. aureus toxin does not kill the Langerhans cells. C. The live S. aureus bacteria activate a TLR and NLRP3. D. The S. aureus membrane prep does not contain a TLR ligand. E. TLR activation by S. aureus membranes induces interferon production.

C. The live S. aureus bacteria activate a TLR and NLRP3.

The first pattern recognition receptor (PRR) important in innate immune responses was discovered in the fruit fly Drosophila melanogaster. Stimulation of this receptor, called Toll, induces: A. The synthesis of prostaglandins and leukotrienes B. The inflammatory response in Drosophila hemolymph vessels C. The production of antimicrobial peptides D. The recruitment of phagocytic cells to the site of infection E. The activation of Drosophila complement

C. The production of antimicrobial peptides

The formation of the C3 convertase is a key step in complement activation that occurs in all three complement pathways. This enzyme cleaves C3 in blood plasma, leading to a conformational change in the C3b fragment that exposes its reactive thioester group. The activated C3b is potentially harmful to the host, if it becomes covalently attached to a host cell, rather than to the surface of a pathogen. This deleterious outcome is largely avoided by: A. The inability of active C3b to diffuse away in the blood plasma. B. The inability of active C3b to covalently attach to the membranes of eukaryotic cells. C. The rapid hydrolysis of active C3b in solution, rendering it inactive. D. The tight binding of active C3b to the C3 convertase. E. The ability of active C3b to recruit phagocytic cells.

C. The rapid hydrolysis of active C3b in solution, rendering it inactive.

Naive B and T lymphocytes are small, quiescent cells with little cytoplasm and low metabolic activity. Yet within hours after being activated following encounter with their antigen, these cells enlarge and up-regulate many biosynthetic and metabolic pathways. Approximately one day later, the cells begin dividing, and for several days they are the most rapidly dividing cells in the body, undergoing 2-4 rounds of cell division every day. In order to maintain this phenomenal rate of cell division, lymphoblasts must: A. Use the large energy stores accumulated by them when they were naive quiescent cells prior to their activation B. Engulf their neighboring small quiescent lymphocytes in order to take their lipids and proteins for raw material C. Up-regulate synthesis of mRNA and proteins, some of which encode for glucose transporters and enzymes used for glycolysis D. Phagocytose extracellular proteins and lipids and degrade them for energy production E. Macropinocytose metabolites and sugars from the blood for use in glycolysis

C. Up-regulate synthesis of mRNA and proteins, some of which encode for glucose transporters and enzymes used for glycolysis

As a family, TLRs can recognize PAMPs associated with a broad array of different pathogens, including bacteria, viruses, and fungi. Patients with a specific susceptibility to herpesvirus infections have a defect in their ability to respond to viral nucleic acids using TLR-3, TLR-7, or TLR-9, even though these proteins are expressed in the patients' cells. Analysis of the TLRs in macrophages and dendritic cells from these patients would likely show which of the arrangements in Figure Q3.11? (LOOK AT FIGURE)

C. all on outside of ring

Most normal tissues contain resident macrophages, and connective tissue sites in the gastrointestinal tract and the lung contain large numbers of these cells. Yet the blood also contains a high number of circulating 'classical' monocytes that can differentiate into macrophages after entering tissues. These circulating monocytes function to: A. Phagocytose and kill pathogens in the blood B. Line the endothelial surfaces of the blood vessels with phagocytic cells C. Enter lymph nodes and patrol for infecting microbes in these organs D. Amplify the local innate immune response by entering tissues that are infected E. Differentiate into dendritic cells during an inflammatory response

D. Amplify the local innate immune response by entering tissues that are infected

Immunodeficiency diseases occur when individuals have defects in leukocyte adhesion to inflamed endothelial cells, thereby impeding the extravasation of phagocytes into infected tissues. When neutrophils from one class of these patients were isolated and tested using in vitro assays for neutrophil-endothelial cell interactions and extravasation, it was found that the neutrophils could slowly roll along the endothelial vessel wall but were unable to arrest and migrate across the endothelium. The most likely protein deficient in these neutrophils is: A. ICAM-1 or ICAM-2 B. P-selectin C. E-selectin D. An integrin E. Sulfated sialyl-LewisX

D. An integrin

: The clonal selection theory was first proposed in the 1950s, decades before the molecular details of B and T lymphocyte development and lymphocyte antigen recognition responses were elucidated. Nonetheless, Burnet, who proposed this theory, correctly inferred several key aspects of adaptive immune responses. One key postulate that Burnet proposed was that: A. Cells of the innate immune system are distinct from those of the adaptive immune system. B. Cells of the adaptive immune system are generated from a pluripotent hematopoietic stem cell that resides in the bone marrow. C. B and T lymphocytes are closely related cells that have distinct properties from myeloid cells. D. Circulating antibodies are generated by many different antibody-secreting cells, each of which expresses a single type of antibody on its surface as a receptor. E. Antibodies binding to pathogens lead to efficient pathogen clearance by phagocytic cells.

D. Circulating antibodies are generated by many different antibody-secreting cells, each of which expresses a single type of antibody on its surface as a receptor.

Innate lymphoid cells (ILCs) are effector cells that generally reside in barrier tissues, such as the skin, the gut, and the lung. These cells closely resemble subsets of T lymphocytes, but lack a T cell antigen-receptor. Instead, these cells produce their effector molecules following stimulation by: A. Microbial PAMPs that stimulate pattern recognition receptors on ILCs B. TNF-, which is produced during the inflammatory response C. Acute phase response proteins produced in the liver during an infection D. Cytokines made by other innate cells, such as macrophages or dendritic cells E. Antimicrobial peptides made by epithelial cells in response to infection

D. Cytokines made by other innate cells, such as macrophages or dendritic cells

One form of anemia results when individuals have a deficiency in the enzyme phosphatidylinositol glycan A (PIGA). This enzyme is required for the membrane attachment of proteins anchored by glycolipids to the plasma membrane, using what is called a 'GPI-linkage.' Included in the group of GPI-linked cell surface proteins is DAF/CD55. These individuals become anemic because: A. DAF/CD55 prevents the lysis of red blood cells by infecting pathogens. B. DAF/CD55 normally prevents the spleen from clearing healthy red blood cells from the circulation. C. In the absence of PIGA, the red blood cell membrane is bare of proteins allowing increased access of complement activating proteins to attach to the cell membrane. D. DAF/CD55 is a complement inhibitory protein that inactivates any C3 convertase that may form on host cell surfaces. E. In the absence of PIGA, red blood cells are unable to synthesize high levels of hemoglobin.

D. DAF/CD55 is a complement inhibitory protein that inactivates any C3 convertase that may form on host cell surfaces.

In patients with lymphomas, the cancer cells invade the bone marrow and destroy the environment required for normal hematopoiesis. This leads to bone marrow failure, which disrupts the production of hematopoietic cell lineages. All of the following cell types would be affected by this EXCEPT: A. Red blood cells B. Macrophages C. Lymphocytes D. Endothelial cells E. Granulocytes

D. Endothelial cells

The mucosal tissues of the body have their own unique set of immune structures that function as sites for initiating adaptive immune responses. The necessity for mucosa-associated lymphoid tissues to have unique cell types (M cells) and structures is because: A. The mucous layer lining mucosal surfaces makes it difficult for normal antigen- presenting cells to function. B. The epithelial surfaces that line the gut, lungs, and nasal passages prevent antigen-presenting cells from accessing microbes and microbial products. C. The epithelial cells found in mucosal tissues are distinct from those that provide barrier functions to the skin. D. Mucosal sites, where most pathogens access the body, are exposed to vast numbers of diverse microbes. E. Mucosal tissues lack innate sensor cells that can respond to PAMPs and provide short-term innate immune protection.

D. Mucosal sites, where most pathogens access the body, are exposed to vast numbers of diverse microbes.

Mycobacteria are intracellular pathogens that have adapted to life inside phagocytic cells, such as macrophages. These intracellular bacteria are taken up by phagocytosis, similar to other pathogens, but the bacteria are not killed. One possible mechanism that could account for this immune evasion by mycobacteria is their ability to: A. Prevent induction of nitric oxide production in the phagosome B. Prevent the acidification of phagosomes C. Prevent the expression of antimicrobial peptides in the phagosome D. Prevent fusion of phagosomes with lysosomes E. Kill the macrophage before it kills them

D. Prevent fusion of phagosomes with lysosomes

The innate immune response together with antibodies are generally not effective at clearing infections established by pathogens that replicate inside host cells. The evolution of T cells has provided a means for the immune response to 'see' intracellular infections based on the ability of T cells to: A. Secrete cytokines that diffuse into the infected tissue B. Activate type I interferon production by macrophages and dendritic cells C. Activate macrophages to induce inflammation D. Recognize pathogen-derived peptides on host MHC surface molecules E. Express cytoplasmic sensors for detecting pathogen-derived nucleic acids

D. Recognize pathogen-derived peptides on host MHC surface molecules

Antibody heavy and light chain polypeptides consist of repeated domains, each of which is ~110 amino acids and folds up into a compact three- dimensional structure known as an 'immunoglobulin domain.' These immunoglobulin domains are: A. Mixed and matched between different antibody heavy and light chains to produce variability B. Always identical to each other within a single antibody heavy chain or light chain polypeptide C. Always differ in amino acid sequence between different light chain polypeptides in both of the two light chain immunoglobulin domains D. Similar but not identical in amino acid sequence when comparing the domains in a single heavy chain polypeptide E. Identical in amino acid sequence for every domain when comparing different antibody heavy chain polypeptides to each other

D. Similar but not identical in amino acid sequence when comparing the domains in a single heavy chain polypeptide

In recent years, several new vaccines have been developed that are made from purified viral surface proteins, rather than intact or live viruses. They are referred to as subunit vaccines. In order to generate a protective adaptive immune response to a subunit vaccine, the viral protein(s) must be mixed with an adjuvant. The adjuvant functions to: A. Mimic the process of normal virus entry by binding to the host receptor and inducing receptor-mediated endocytosis B. Induce vascular permeability to promote the accumulation of fluid and serum proteins at the vaccine injection site C. Induce the production of chemotactic proteins that recruit neutrophils and then monocytes to the site of vaccine injection D. Stimulate dendritic cells to up-regulate co-stimulatory molecules and migrate to the regional lymph node E. Promote the activation of the complement cascade to induce complement deposition on the viral subunit proteins

D. Stimulate dendritic cells to up-regulate co-stimulatory molecules and migrate to the regional lymph node

An infant with recurrent bacterial and fungal infections is suspected to have an immunodeficiency disease. Within two days after exposure to a pathogen, the organisms have proliferated to dangerous levels requiring immediate systemic antibiotic treatment. It is unlikely that this infant has a defect in B or T lymphocyte responses to the infection because: A. Bacteria and fungi do not require B cell or T cell responses for their clearance. B. Bacteria and fungi are not efficiently transported to draining lymph nodes to initiate adaptive immune responses. C. Systemic infections of bacteria and fungi are usually cleared by the spleen. D. The defective immune response occurs too rapidly following infection to be due to a defect in B or T lymphocytes responses. E. Adaptive immune responses require dendritic cells to take up and degrade pathogens.

D. The defective immune response occurs too rapidly following infection to be due to a defect in B or T lymphocytes responses.

Some species, like camels, alpacas, and llamas, have evolved variant forms of immunoglobulin proteins that retain the ability to bind to antigens. While overall the antibodies made by these animals are simpler than human or mouse antibodies, an important feature conserved among all of these antibodies is: A. The presence of both heavy and light chain polypeptides B. Antigen-binding sites comprised of VH and VL sequences C. The presence of exactly three constant region domains D. The presence of two antigen-binding sites per antibody E. The presence of multiple disulfide bonds linking antibody light chains to heavy chains

D. The presence of two antigen-binding sites per antibody

Mannose binding lectins (MBL) and ficolins are the two classes of proteins that can initiate the lectin pathway of complement activation. These proteins are selective for activating complement on the surfaces of microbial pathogens rather than host cells because: A. Their higher-order oligomeric structure can be assembled only after the monomers first bind to pathogen membranes. B. They only recruit MASP (MBL-associated serine proteases) proteins when bound to pathogen surfaces and not when bound to host cells. C. They only undergo the conformational change needed to activate MASP proteins when bound to a pathogen and not when bound to a host cell. D. They only bind to carbohydrate side chains and oligosaccharide modifications found on pathogen surfaces but not on host cell membranes. E. The activated MASP proteins are rapidly inactivated by hydrolysis when present on the surface of a host cell.

D. They only bind to carbohydrate side chains and oligosaccharide modifications found on pathogen surfaces but not on host cell membranes.

When a mixture of different IgG antibody proteins are treated with the enzyme papain, each antibody is cleaved into three roughly equal size fragments. From each original antibody, two of the three fragments are identical to each other, and represent the 'arms' of the antibody 'Y'. These fragments are known as Fab fragments. The third fragment is known as the Fc region, because this fragment will crystallize when purified. The reason a mixture of Fc fragments will crystallize is because: A. It is the only part of the antibody protein that can easily be purified at the high concentrations needed for crystallization. B. It has no disulfide bonds holding the domains together, as disulfide bonds will inhibit crystallization. C. It is the only fragment of the antibody that still has disulfide bonds, so it remains intact during the crystallization process. D. The Fc fragments of IgG are much more water soluble than the Fab fragments. E. All Fc fragments generated from a mixture of IgG molecules have the identical amino acid sequence.

E. All Fc fragments generated from a mixture of IgG molecules have the identical amino acid sequence.

An infection in the skin, such as a pimple, often produces pus. The major component of pus is: A. Toxic oxygen molecules released by macrophages B. Toxic nitrogen molecules released by macrophages C. NETs released by neutrophils D. Dead epithelial cells killed by lysozyme E. Dead and dying neutrophils

E. Dead and dying neutrophils

Many different NOD-like receptors, including several with pyrin domains and several with HIN domains, can function to trigger inflammasome assembly leading to the activation of caspase-1. The reason for many different sensors in this innate response system is that: A. Each NOD-like receptor is expressed in a different set of phagocytic cells, depending on its tissue location. B. Each NOD-like receptor resides in a different intracellular compartment. C. Each NOD-like receptor performs a different step in the multi-step cascade leading to inflammasome activation. D. Each NOD-like receptor binds to a different adapter protein and triggers a different form of the inflammasome. E. Each NOD-like receptor recognizes different PAMPs and is activated by different pathogens.

E. Each NOD-like receptor recognizes different PAMPs and is activated by different pathogens.

The production of antimicrobial peptides is one of the most evolutionarily ancient mechanisms of defense for multicellular organisms, and most eukaryotic species make many different forms of these proteins. For instance, human paneth cells in the gastrointestinal epithelium make 21 different defensins. The reason for this diversity of antimicrobial peptides is: A. Epithelial cells make different forms than those made by neutrophils. B. Neutrophils make many different defensins and store them as inactive proteins in their secretory granules. C. Most of them are produced only in response to infection. D. The production of different peptides is induced following a bacterial infection versus a fungal infection. E. Each one has distinct activities against Gram-negative bacteria, Gram-positive bacteria, or fungi.

E. Each one has distinct activities against Gram-negative bacteria, Gram-positive bacteria, or fungi.

A key feature of TLR signaling is the ability to induce inflammatory cytokine gene expression extremely rapidly following TLR stimulation. This is accomplished by signaling pathways using several mechanisms to activate transcription factors that are already present in the cell prior to TLR stimulation, but are kept in an inactive state. These signaling pathways use all of the following mechanisms EXCEPT: A. Induced ubiquitination leading to protein degradation B. Induced ubiquitination inducing protein-protein interactions C. Induced phosphorylation leading to nuclear translocation D. Induced phosphorylation leading to kinase activation E. Induced phosphorylation preventing protein degradation

E. Induced phosphorylation preventing protein degradation

Many different viruses encode proteins that function to down-regulate MHC class I expression on host cells following infection with the virus. This immune evasion mechanism allows the virus to hide from CD8 T lymphocytes that normally detect virus-infected cells by using their T cell antigen receptor to recognize viral peptides bound to MHC class I proteins on the surface of the infected cell. To counteract this immune evasion strategy, NK cells have: A. Activating receptors that recognize MHC class I proteins B. A mechanism to secrete antiviral peptides C. Inhibitory receptors that recognize viral capsid proteins D. Activating receptors that recognize viral capsid proteins E. Inhibitory receptors that recognize MHC class I proteins

E. Inhibitory receptors that recognize MHC class I proteins

When complement proteins are covalently deposited onto the surface of a bacterium, this can sometimes lead to direct lysis of the bacterium. However, more commonly, the deposition of complement proteins onto the bacterial surface does not directly harm the bacterium. Instead, these complement proteins aid in bacterial elimination by: A. Recruiting antibodies to the bacterial surface, leading the antibody-dependent neutralization B. Providing a mechanism for phagocytes to use their Fc receptors to recognize and ingest the bacterium C. Cross-linking carbohydrate structures on the bacterial surface, thereby preventing the bacterium from replicating D. Stimulating B lymphocytes to produce more antibodies against the bacterium E. Providing a mechanism for phagocytes bearing complement receptors to recognize and ingest the bacterium

E. Providing a mechanism for phagocytes bearing complement receptors to recognize and ingest the bacterium

In healthy adults, neutrophils represent approximately half of their white blood cells. During a bacterial infection, this number often rises to >80%. One factor contributing to this rise is: A. Recruitment of neutrophils from tissues into the blood B. Proliferation of neutrophils at the site of infection C. Proliferation of neutrophils in the blood D. Differentiation of blood monocytes into neutrophils E. Release of neutrophils into the blood from the bone marrow

E. Release of neutrophils into the blood from the bone marrow

The alternative pathway of complement activation has an important role in innate immunity, due to its ability to greatly amplify the amount of C3b deposited onto the pathogen surface. This amplification occurs because: A. The C3 convertase of the alternative pathway is much more active than those of the classical and lectin pathways. B. The C3 convertase of the alternative pathway works as a soluble enzyme in the plasma. C. The C3 convertase of the alternative pathway cannot be inactivated by complement regulatory factors in the host. D. The C3 convertase of the alternative pathway is more efficiently recruited to pathogen surfaces than the C3 convertases of the classical and lectin pathways. E. The C3 convertase of the alternative pathway contains C3b, and can generate more of itself.

E. The C3 convertase of the alternative pathway contains C3b, and can generate more of itself.

Women with urinary tract infections caused by E. coli are generally treated with a course of antibiotics. A common complication of the antibiotic treatment is the occurrence of a vaginal yeast infection caused by Candida albicans, an organism that is normally present in very low numbers in the human vaginal tract. This complication occurs because: A. The E. coli infection damages the reproductive epithelium, causing a breach in the tight junctions and allowing invasion by the Candida albicans. B. The E. coli infection induces adhesion molecule expression on the reproductive epithelium, allowing attachment of the yeast. C. The antibiotic treatment kills all strains of fungi present in the reproductive tract, except the Candida albicans. D. The E. coli infection causes gastrointestinal distress leading to diarrhea. E. The antibiotics kill many of the commensal organisms in the reproductive tract, allowing overgrowth of the fungus.

E. The antibiotics kill many of the commensal organisms in the reproductive tract, allowing overgrowth of the fungus.

Macrophages express multiple types of receptors on their surface that stimulate phagocytosis of microbes, leading to pathogen internalization and destruction. Many of these receptors, such as Dectin-1, rely on direct recognition of a PAMP on the pathogen surface. However, some receptors that stimulate phagocytosis rely on soluble factors (not associated with the phagocyte membrane) to identify and mark the pathogen for uptake by the phagocyte. One such receptor is: A. The mannose receptor B. The class A scavenger receptor C. The lipid receptor D. The macrophage C-type lectin receptor E. The complement receptor

E. The complement receptor

Individuals with defects in T cell development have a severe immunodeficiency disease called SCID (severe combined immunodeficiency disease). In these individuals, the absence of all T cells causes defects in both cell-mediated (T cell- based) and humoral (antibody-based) immune responses. The defect in antibody responses in SCID patients is due to: A. The important role of T cells in regulating B cell development in the bone marrow B. The inter-dependence of T cells and B cells for the normal development of secondary lymphoid organs. C. The absence of phagocytic cells needed for antibody-dependent pathogen clearance in SCID patients D. The poor survival of B cells in patients with defects in their T cells E. The important role of T follicular helper cells in generating protective antibody responses

E. The important role of T follicular helper cells in generating protective antibody responses

The terminal components of the complement pathway assemble to form a membrane attack complex that can induce pathogen lysis and death. Yet, evidence indicates that this feature of complement is less important than the earlier steps that promote pathogen opsonization and induce inflammation. This conclusion is based on: A. In vitro experiments showing that very few species of bacteria are susceptible to lysis by the membrane attack complex B. Experiments indicating that only bacteria, but not viruses or fungi, are susceptible to lysis by the membrane attack complex C. The very low levels of terminal complement components in the serum D. The fact that other mammalian species lack the terminal components of the complement pathway needed to form the membrane attack complex E. The limited susceptibility to infections of patients with deficiencies in terminal complement components

E. The limited susceptibility to infections of patients with deficiencies in terminal complement components

Given the enormous heterogeneity of antigen receptors expressed on the populations of naive B and T lymphocytes, the adaptive immune response relies on a process whereby the rare lymphocyte that binds to the antigen is first induced to proliferate, before it can perform its effector function. For B cells, there is a clever mechanism that ensures that the specificity of the antibody secreted by the plasma cell will recognize the same pathogen that initially stimulated the B cell antigen receptor and induced B cell proliferation. This mechanism is: A. The naive B cell expresses an array of different B cell antigen receptors, and randomly chooses which specificity of antibody to secrete as a plasma cell. B. The naive B cell expresses a single specificity of B cell antigen receptor, and then up-regulates the expression of this receptor so it can bind tightly to the pathogen. C. The plasma cell proliferates after it has finished secreting antibody to generate more plasma cells with specificity for the pathogen. D. The plasma cell traps secreted antibody molecules in its extracellular matrix and uses these antibodies to bind to the pathogen. E. The naive B cell expresses a membrane-bound form of the antibody as a receptor, and secretes that same antibody when it differentiates into a plasma cell.

E. The naive B cells expresses a membrane-bound form of the antibody as a receptor, and secretes that same antibody when it differentiates into a plasma cell.

True/False: Chemokines are small chemoattractant molecules made by epithelial cells, tissue macrophages, and endothelial cells in response to infection or injury. They differ slightly in sequence and structure based on the cells that secrete them, but all of them act to recruit both monocytes and neutrophils from the blood.

False

True/False: In the sea urchin, a massive diversification of innate recognition receptors has occurred, resulting in the presence of over 200 TLR genes, over 200 NOD-like receptor genes, and over 200 scavenger receptor genes in the genome of these organisms. These receptors are unlikely to contribute to an enhanced innate immune response in sea urchins, because nearly all of these genes are pseuodgenes.

False

True/False: Like innate sensors of infections (TLRs, NLRs, RLRs), antibodies frequently recognize nucleic acids of pathogenic organisms.

False

True/False: Mucosal surfaces and external epithelia are major routes of pathogenic infection. Mucosal surfaces are found in tissues such as the gastrointestinal tract, the reproductive tract and the mouth and respiratory tract. While the mouth and respiratory tract are routes of virus but not bacterial infections, the gastrointestinal tract is the route for bacterial but not virus infections.

False

True/False: Our immune system efficiently kills all categories of microbes that attempt to colonize our bodies.

False

True/False: Each family of NK cell receptors has members that promote NK cell activation, and members that send inhibitory signals when engaged. The difference between activating and inhibitory receptors lies in their association with accessory proteins that promote downstream signaling, or in their ability to recruit and activate inhibitory phosphatases, respectively.

True

True/False: For cells of the innate immune system, each individual cell has multiple pattern recognition receptors, and can recognize many different pathogens. In contrast, cells of the adaptive immune system each express only a single antigen receptor, and have a single specificity for pathogen recognition.

True

True/False: Innate lymphoid cells and NK cells are effector cells that respond rapidly after encountering a pathogen. Several different subsets of innate lymphoid cells exist, and each is specialized to respond to a category of pathogen (e.g., viruses, extracellular bacteria, helminthic parasites, etc). Innate lymphoid cells reside primarily in tissues such as the lungs, the lining of the gastrointestinal tract, and the skin, because these sites represent the major routes of entry of pathogens into the body.

True

True/False: Neutrophils regulate the production of active cathelicidins (a class of antimicrobial peptides) by segregating the inactive propeptide from the processing 4 enzyme that cleaves and activates it in two different types of cytoplasmic granules. These two types of granules are induced to fuse with phagosomes after ingestion of microbes, bringing the processing enzyme and the propeptide together.

True

True/False: Several pathogens produce proteins, either membrane-bound or secreted, that inactivate C3b that might be deposited on the pathogen surface. C3b is specifically targeted due to its central position in all three complement pathways.

True

True/False: TH1, TH2, TH17, and T follicular helper (TFH) cells represent four different subsets of CD4 effector cells. Each of these subsets produces a distinct set of cytokines when stimulated, that in turn, act to mobilize distinct immune effector mechanisms. While TH1, TH2, and TH17 cells recruit and activate innate immune cells, TFH cells act to amplify the adaptive immune response.

True

True/False: The C3 convertase of the alternative complement pathway amplifies the overall magnitude of complement activation regardless of which of the three pathways initiated the complement activation initially.

True

True/False: The extravasation of neutrophils into tissues at sites of infection or inflammation requires changes to both the endothelium and to the neutrophil that are induced by chemokines and cytokines produced in the infected tissue.

True

True/False: The spleen is a secondary lymphoid organ that performs several functions. In addition to its role as a site for initiating adaptive immune responses, the spleen is important in removing dead or damaged red blood cells from the circulation. Its immune function is important because blood-borne pathogens will not be transported to draining lymph nodes via the lymph fluid.

True


Related study sets

Chapter 1 Environmental Problems, Their Causes, and Sustainability

View Set

New English Adventure 2 - Unit Hello

View Set

Language: What Develops in the First Two Years?

View Set

Ch. 48 Skin Integrity and Wound Care

View Set

264- Binary, HEX & ASCII Study Guide- Quiz Questions-Spiker.J

View Set

FIN 1115 01---Personal Finance Exam 1 Questions

View Set

Nursing Management of the Pregnancy at Risk: Selected Health Conditions and Vulnerable Populations: Chapter 20: PrepU

View Set

AP Government & Politics Unit III

View Set

Los apodos de la clase roja 2021-22

View Set

AP Gov Chapter 8 - Political Parties

View Set