Pre-Calc studyguide TEST 8
x{ pie/2, 7pie/6, 11pie/6}
Find all solutions give answer in general form: cos2x+sinx=0
x{ 5pie/12, pie/4, 7pie/12, 3pie/4, 5pie/4, 17pie/12, 13pie/12, 7pie/4, pie/12, 23pie/12, 19pie/12, 11pie/12}
Find all solutions give answer in general form: tan^23x-1=0
x{ pie/4, 3pie/4, 5pie/4, 7pie/4}
Find all solutions to the equation in the interval [0, 2pie] : tan^2x-1=0
x{ pie/4, 3pie/4, 5pie/4, 7pie/4}
Find all solutions to the equation in the interval [0, 2pie]: 4cos^2x=2
x{ pie/2}
Find all solutions to the equation in the interval [0, 2pie]: cscx^2=2cscx-1
x{ 0, 2pie}
Find all solutions to the equation in the interval [0, 2pie]: sin^2x + 2cosx=2
x{3pie/4, 7pie/4}
Find all solutions to the equations in the interval [0, 2pie] cot(x)+2=1
cos(u+v)= sqrt2-sqrt6/4
Find the value by using the sum or difference formula: 345= 300 + 45 cos(345)
cosx-sinx
Simplify: cos(3pie/2-x)
2cosx(sqrt3/2)
Simplify: cos(x+7pie/6) + cos(x-7pie/6)
sin2u= 8sqrt33/7 cos2u= -17/49 tan2u= -56sqrt33/17 csc2u=7/264 cot2u= 17sqrt33/1848
Solve: Given cosu=3/4 (0<u<pie/2) secv=25/24 (3pie/2 < v < 2pie) Find sin2u cos2u tan2u sec2u csc2u cot2u
sin2x=21/29 cos2x=1 tan2x=21/29 sec2x=1
Use the right triangle to find the exact values of the trigonometric function. tanx= 3/7
Given 1/cosx=secx; sinx/cosx=tanx. Multiply 1-cosx^2=sinx^2=(sinx)(sinx) Division
Verify the Identity: secx-cosx/tanx=sinx
Given Factor Adding Done
Verify the identity: 3sin^2x+2cos^2-2=sin^2x
1/sinx
sin(pie/2-x)[tan(-x)+cot(-x)]=-cscx