Static Electricity

Ace your homework & exams now with Quizwiz!

False

TRUE or FALSE: An object that is electrically neutral contains only neutrons.

Answer: B This is a case of charging by conduction. When a charged object is used to charge a neutral object by conduction, the previously neutral object acquires the same type of charge as the charged object. The charge object maintains the same type of charge that it originally had. So in this case, both objects have a negative charge.

1. A neutral metal sphere is touched by a negatively charged metal rod. As a result, the sphere will be ____ and the metal rod will be ____. Select the two answers in their respective order. a. positively charged b. negatively charged c. neutral d. much more massive e. ... not enough information to tell

Answer: B Protons do NOT move during electrostatic activities, so choices c and d can be ruled out. To ground a positively charged object, electrons must be added to it in order neutralize its excess positive charge. So electrons must move from the ground into the pop can.

1. A positively charged pop can is touched by a person standing on the ground. The pop can subsequently becomes neutral. The pop can becomes neutral during this process because ______. a. electrons pass from the pop can to the person (ground) b. electrons pass from the person (ground) to the pop can c. protons pass from the pop can to the person (ground) d. protons pass from the person (ground) to the pop can

Answer: A Observing the positively charged balloon stick to the wall is evidence that the wall is either neutral or charged negatively. Once the second observation is made, one can conclude that the wall is neutral. If it were charged, then the wall and the uncharged balloon should attract.

1. A rubber balloon possesses a positive charge. If brought near and touched to the door of a wooden cabinet, it sticks to the door. This does not occur with an uncharged balloon. These two observations can lead one to conclude that the wall is _____. a. electrically neutral b. negatively charged c. a conductor d. lacking electrons

Answer: D When two different materials are rubbed together, there is a transfer of electrons from one material to the other material. This causes one object to become positively charged (the electron loser) and the other object to become negatively charged (the electron gainer).

1. During a physics lab, a plastic strip was rubbed with cotton and became positively charged. The correct explanation for why the plastic strip becomes positively charged is that ... a. the plastic strip acquired extra protons from the cotton. b. the plastic strip acquired extra protons during the charging process. c. protons were created as the result of the charging process. d. the plastic strip lost electrons to the cotton during the charging process.

Answer: C Electric forces are repulsive for objects of like charge and attractive between objects of the opposite type of charge or between charged objects and neutral objects.

1. Electrical forces ____. a. can cause objects to only attract each other b. can cause objects to only repel each other c. can cause objects to attract or repel each other d. have no effect on objects

Answer: E In the equation Felect = k • Q1 • Q2 / d2 , the symbol Felect represents the electrostatic force of attraction or repulsion between objects 1 and 2. The symbol k is Coulomb's law constant (9 x 109 N • m2 / C2), Q1 and Q2 represent the quantity of charge on object 1 and object 2, and d represents the separation distance between the objects' centers.

1. The Q in Coulomb's law equation stands for the _____. a. mass of a charged object b. # of excess electrons on the object c. the current of a charged object d. the distance between charged objects e. charge of a charged object

Answer: E Electrons are negatively charged and protons are positively charged. The neutrons do not have a charge.

1. ____ are the charged parts of an atom. a. Only electrons b. Only protons c. Neutrons only d. Electrons and neutrons e. Electrons and protons f. Protons and neutrons

Answer: 0.0267 N Explanation: The electrostatic force is directly related to the product of the charges and inversely related to the square of the separation distance. Tripling one of the charges would serve to triple the force. Tripling the distance would serve to reduce the force by a factor of nine. The combined affect of these two variations would be to make the force 3/9-ths or 1/3-rd the original value. One-third of 0.080 N is 0.0267 N.

10. Two charged objects have an attractive force of 0.080 N. If the charge of one of the objects is tripled and the distance separating the objects is tripled, then what is the new force?

Answer: C During charging by conduction, both objects acquire the same type of charge. If a negative object is used to charge a neutral object, then both objects become charged negatively. In order for the neutral sphere to become negative, it must gain electrons from the negatively charged rod

2. A neutral metal sphere is touched by a negatively charged metal rod. During the process, electrons are transferred from the _____ to the _____ and the sphere acquires a _____ charge. a. neutral sphere, charged rod, negative b. neutral sphere, charged rod, positive c. charged rod, neutral sphere, negative d. charged rod, neutral sphere, positive e. ... nonsense! None of these describe what occurs.

Answer: C During a charging by rubbing (or by friction) process, the material that becomes negatively charged does so because it simply likes electrons more than the material with which it is rubbed. The conductive abilities of the two materials has nothing to do with the subsequent result of the rubbing process.

4. Which statement best explains why a rubber rod becomes negatively charged when rubbed with fur? a. The rubber that the rod is made of is a better insulator than fur. b. The fur is a better insulator than the rubber. c. Molecules in the rubber rod have a stronger attraction for electrons than the molecules in the fur. d. Molecules in the fur have a stronger attraction for electrons than the molecules in the rubber rod.

Answer: F In order to ground an electroscope, electrons must have a conducting pathway between the ground and the object. In this case, a piece of plastic is part of the pathway connecting the ground (the student) and the charged object. Since plastic is an insulator, electrons are incapable of moving through the baseball bat. Grounding does not occur in this instance. Were there a conducting pathway available, choice a would be the proper choice.

2. A physics student, standing on the ground, touches an uncharged plastic baseball bat to a negatively charged electroscope. This will cause ___. a. the electroscope to be grounded as electrons flow out of the electroscope. b. the electroscope to be grounded as electrons flow into the electroscope. c. the electroscope to be grounded as protons flow out of the electroscope. d. the electroscope to be grounded as protons flow into the electroscope. e. the baseball bat to acquire an excess of protons. f. absolutely nothing (or very little) to happen since the plastic bat does not conduct.

Answer: Saran Wrap When two materials are rubbed together, the material with the greatest affinity for electrons is the material which takes electrons away from the other material. Saran wrap takes electrons from nylon and acquires the negative charge. In turn, the nylon loses electrons and becomes charged positively.

2. Saran Wrap has a larger electron affinity than Nylon. If Nylon is rubbed against Saran Wrap, which would end up with the excess negative charge? ____________ Explain.

Answer; B, C and E Aluminum and silver are metals, making them good conductors. The human body is a fairly good conductor. When wet, its an even better conductor.

2. Which of the following materials are likely to exhibit more conductive properties than insulating properties? _____ Explain your answers. a. rubber b. aluminum c. silver d. plastic e. wet skin

Answer: F A and B are characteristic of positive and negative objects. As for C, both insulators and conductors can be charged. As for D, this has nothing to do with the conductive properties of materials. As for E, neutrons are located in the nucleus and are "out of the way" of mobile electrons.

3. A conductor differs from an insulator in that a conductor ________. a. has an excess of protons b. has an excess of electrons c. can become charged and an insulator cannot d. has faster moving molecules e. does not have any neutrons to get in the way of electron flow f. none of these

Answer: E Protons are never transferred in electrostatic activities. In this case, electrons are transferred from the neutral object to the positively charged rod and the sphere becomes charged positively.

3. A neutral metal sphere is touched by a positively charged metal rod. During the process, protons are transferred from the _____ to the _____ and the sphere acquires a _____ charge. a. charged rod, neutral sphere, negative b. charged rod, neutral sphere, positive c. neutral sphere, charged rod, negative d. neutral sphere, charged rod, positive e. ... nonsense! None of these describe what occurs.

Answer: 0.020 N Explanation: The electrostatic force is inversely related to the square of the separation distance. So if d is two times larger, then F is four times smaller - that is, one-fourth the original value. One-fourth of 0.080 N is 0.020 N.

3. Two charged objects have a repulsive force of 0.080 N. If the distance separating the objects is doubled, then what is the new force?

Answer: BCD In electrostatic activities, protons are never transferred (which rules out choices a and e). Electrons are not positively charged (ruling out choice e). Choices B, C and D are all true and explain the essential nature of the conduction charging process.

4. A metal sphere is electrically neutral. It is touched by a positively charged metal rod. As a result, the metal sphere becomes charged positively. Which of the following occur during the process? List all that apply. a. The metal sphere gains some protons.,/p. b. Electrons are transferred from the sphere to the rod. c. The metal sphere loses electrons. d. The overall charge of the system is conserved. e. Protons are transferred from the rod to the sphere. f. Positive electrons are moved between the two objects.

Answer: C Rule out A since atoms are not capable of moving within solid spheres. Rule out B since protons are not capable of moving in electrostatic demos. C is the proper explanation since the negative electrons are attracted to the region of positive charge. The electrons migrate towards the left side of the sphere until there is a uniform distribution of positive charge.

4. Suppose that a conducting sphere is charged positively by some method. The charge is initially deposited on the left side of the sphere. Yet because the object is conductive, the charge spreads uniformly throughout the surface of the sphere. The uniform distribution of charge is explained by the fact that ____. a. the charged atoms at the location of charge move throughout the surface of the sphere b. the excess protons move from the location of charge to the rest of the sphere c. excess electrons from the rest of the sphere are attracted towards the excess protons

Answer: 0.00889 N Explanation: The electrostatic force is inversely related to the square of the separation distance. So if d is three times larger, then F is nine times smaller - that is, one-ninth the original value. One-ninth of 0.080 N is 0.00889 N.

4. Two charged objects have a repulsive force of 0.080 N. If the distance separating the objects is tripled, then what is the new force?

Answer: 0.0050 N Explanation: The electrostatic force is inversely related to the square of the separation distance. So if d is four times larger (quadrupled), then F is 16 times smaller - that is, 1/16-th the original value. One-sixteenth of 0.080 N is 0.0050 N.

5. Two charged objects have an attractive force of 0.080 N. If the distance separating the objects is quadrupled, then what is the new force?

As fuel is pumped from the tanker car to a reservoir, charge can quickly build up as the fluid flows through the hoses. This static charge can create sparks capable of igniting the fuel. By connecting the body of the tanker car to the ground, the static charge can be transferred to the ground. A metal wire is used since metals are conductive and allow charge to flow through them.

5. When an oil tanker car has arrived at its destination, it prepares to empty its fuel into a reservoir or tank. Part of the preparation involves connecting the body of the tanker car with a metal wire to the ground. Suggest a reason for why is this done.

Answer: 0.040 N Explanation: The electrostatic force is directly related to the product of the charges and inversely related to the square of the separation distance. Doubling one of the charges would serve to double the force. Doubling the distance would serve to reduce the force by a factor of four. The combined affect of these two variations would be to decrease the force by a factor of two - changing it from 0.080 N to 0.040 N.

7. Two charged objects have a repulsive force of 0.080 N. If the charge of one of the objects is doubled, and the distance separating the objects is doubled, then what is the new force?

Answer: 0.080 N Explanation: The electrostatic force is directly related to the product of the charges and inversely related to the square of the separation distance. Quadrupling one of the charges would serve to quadruple the force. Doubling the distance would serve to reduce the force by a factor of four. The combined affect of these two variations would be to not alter the force at all; it would remain as 0.080 N.

9. Two charged objects have an attractive force of 0.080 N. If the charge of one of the objects is increased by a factor of four, and the distance separating the objects is doubled, then what is the new force?

False Neutrons are positioned in the nucleus of an atom. And like protons, neutrons are never transferred in electrostatic experiments. They are bound in the nucleus and cannot escape by ordinary electrostatic methods.

TRUE OR FALSE: An object that becomes grounded gains neutrons during the grounding process.

False In induction charging, there is never a transfer of electrons between the charged object (the balloon) and the object being charged (Can X). The electron movement happens between the object being charged (Can X) and the ground (Can Y). In this case, electrons would leave Can X and enter Can Y.

TRUE OR FALSE: Two neutral conducting pop cans are touching each other. A negatively charged balloon is brought near Can X as shown below. As the balloon approaches Can X, there is a movement of electrons between the balloon and can X (in one direction or the other).

False

TRUE or FALSE: An object that is negatively charged could contain only electrons with no accompanying protons.

False

TRUE or FALSE: An object that is positively charged contains all protons and no electrons.

Answer: False When an object becomes polarized, its center of positive charge becomes separated from its center of negative charge. Overall, there are just as many positive charges as negative charges; the object has a balance of charges and is therefore neutral.

When an object becomes polarized, it acquires a charge and becomes a charged object.


Related study sets

Medical Ethics Final Chapters 1-13

View Set

Potter & Perry Ch 32 - Medication Administration (Practice Questions)

View Set

Econ 101 Chapter 6 Supply Demand and Government Policies

View Set

AP World Unit 2 Practice Questions

View Set

Chapter 20: Blood Vessels and Circulation

View Set

Slave Narrative-Honors English (Enderby/Hilty)

View Set