unit 3

Ace your homework & exams now with Quizwiz!

derivative of an inverse function:

(d/dx)[f^(-1)(x)] = 1 / (f'[f^(-1)(x)])

inverse trig derivatives: (d/dx)sin^(-1)(x) = (d/dx)sec^(-1)(x) = (d/dx)tan^(-1)(x) = (d/dx)cos^(-1)(x) = (d/dx)csc^(-1)(x) = (d/dx)cot^(-1)(x) =

(d/dx)sin^(-1)(x) = 1/√(1 - x^2) (d/dx)sec^(-1)(x) = 1/(IxI√(x^2 - 1)) (d/dx)tan^(-1)(x) = 1/(x^2 + 1) (d/dx)cos^(-1)(x) = -1/√(1 - x^2) (d/dx)csc^(-1)(x) = -1/(IxI√(x^2 - 1)) (d/dx)cot^(-1)(x) = -1/(x^2 + 1)

a function h satisfies h(3) = 5 and h'(3) = 7. which of the following statements about the inverse of h must be true?

(h^-1)'(5) = 1/7

if y = xe^x, then d^ny/dx^n =

(x + n)e^x

domain and range of an inverse trig function y = sin^(-1)(x) y = cos^(-1)(x) y = tan^(-1)(x)

*look at pictures/graph on first page of 3.4 domain: -1<=x<=1; range: -π/2<=y<=π/2 domain: -1<=x<=1; range: 0<=y<=π domain: -infinity<=x<=infinity; range: -π/2<y<π/2 (open circle = <>)

let g(x) = (arccosx^2)^5. then g'(x) =

-10((x(arccosx^2)^4)/(√(1-x^4)))

find the derivative of the following: y = 1/x^3 - 1/2x^4 y' = y'' = y''' =

-3x^-4 - 2x^3 12x^-5 - 6x^2 -60x^-6 - 12x

find the derivative 1. h(x) = cos^2(4x) 2. y = ln√x+3 3. x^2 + 2y^5 = 10xy 4. y = csc^(-1)(x^3)

-8cos4xsin4x 1/2x+6 x-5y/5x-5y^4 -3/(IxI√(x^6-1))

Find d^2y/dx^2 1. y = sinx + ln(5x) 2. y = e^xlnx 3. y = sin^2x 4. dy/dx = y^2 + 2x - 1 5. dy/dx = 1/y - 3x 6. dy/dx = xy^2 7. sin(x+y) = 2x 8. e^x = y^3 + 1 9. lny = 5x + 3 10. if f(x) = -3x^3 + 4x^(-2), find f''(-2) 11. if f(x) = xlnx, find f''(1) 12. if f(x) = 3√x - 32/x, find f''(4) 13. if dy/dx = 3cosy + 5x, find d^2y/dx^2 at (2, π/2) 14. if dy/dx = (4-x)/(2y-3), find d^2y/dx^2 at (-1,2) 15. if dy/dx = lnxe^y, find d^2y/dx^2 at (e,1)

-sinx - 1/x^2 e^xlnx + 2e^x/x - e^x/x^2 2cos^2x - 2sin^2x 2y^3 + 4xy - 2y + 2 -1/y^3 + 3x/y^2 - 3 y^2 + 2x^2y^3 4sec^2(x+y)tan(x+y) (e^x3y^2 + (2e^2x)/y) / 9y^4 25y 75/2 1 -35/32 -25 -51 1 + e^2

a curve given by the equation x^3 = xy = 8 has slope given by dy/dx = -3x^2 - y / x. the value of d^2y/dx^2 at the point where x = 2 is

0

horizontal tangent lines exist when the slope, dy/dx = vertical tangent lines exist when the slope, dy/dx =

0 undefined vertical tangent lines can also be undefined because of a cusp or corner

chain rule and implicit differentiation: in terms of x: (d/dx)x = (d/dx)x^2 = (d/dx)e^5x = in terms of y: (d/dx)y = (d/dx)y^2 = (d/dx)e^5y =

1 2x e^(5x)*5 dy/dx 2y(dy/dx) e^(5y)*5(dy/dx)

if arctany = lnx, then dy/dx =

1+y^2 / x

the table below gives the values of the differentiable functions f, g, and f' at selected values of x. let g(x) = f^(-1)(x) x: 1, 2, 3, 4 f(x): 3, 1, -5, 0 f'(x): -3, -2, -5, -6 1. what is the value of g'(1) 2. write an equation for the line tangent to f^(-1) at x = 1 3. let g be a differentiable function such that g(12) = 4, g(3) = 6, g'(12) = -5, and g'(3) = -2. the function h is differentiable and h(x) = g^(-1)(x) for all x. what is the value of h'(6)? 4. if f(x) = 3x^3 + 1 and g is the inverse function of f, what is the value of g'(25)?

1. -1/2 2. y - 2 = -1/2(x - 1) 3. -1/2 4. 1/36

for each problem, let f and g be differentiable functions where g(x) = f^(-1)(x) for all x. 1. f(3) = -2, f(-2) = 4, f'(3) = 5, and f'(-2) = 1. find g'(-2) 2. f(1) = 5, f(2) = 4, f'(1) = -2, and f'(2) = -4. find g'(5) 3. f(6) = -2, f(-3) = 7, f'(6) = -1, and f'(-3) = 3. find g'(7) 4. f(-1) = 4, f(2) = -3, f'(-1) = -5, and f'(2) = 7. find g'(-3)

1. 1/5 2. -1/2 3. 1/3 4. 1/7

find the derivative 1. (d/dx)sin^(-1)(3x) 2. (d/dx)tan^(-1)(2x^2) 3. (d/dx)arcsec(5x)

1. 3/√(1 - 9x^2) 2. 4x/(4x^4 + 1) 3. 5/(IxI√(25x^2 - 1)

find the derivative of each expression 1. d/dxsin^(-1)(5x) 2. d/dxcsc^(-1)(4x^5) 3. d/dxarctan(2x) 4. d/dxsec^(-1)(x^3) 5. d/dxcsc6x 6. d/dxarcos(3x^2) 7. d/dxcot^(-1)(-x) 8. d/dxcos^(-1)(-7x) 9. d/dxarccsc(x^6) 10. d/dxcot^(-1)(4x^4)

1. 5/√(1 - 25x^2) 2. -5/(IxI√(16x^10 - 1)) 3. 2/(4x^2 + 1) 4. 3/(IxI√(x^6 - 1)) 5. -1/(IxI√(36x^2 - 1)) 6. -6x/(√(1 - 9x^4)) 7. 1/(x^1 + 1) 8. 7/(√(1 - 49x^2)) 9. -6/(x√(x^12 - 1)) 10. -16x^3/(16x^8 + 1)

1. inverse of f(x) = 2x. name that function g(x) a. g(x) = b. f(3) = c. g(6) = d. f'(x) = e. g'(x) = f. relationship between g'(x) and f'(x) 2. find inverse of f(x) = x^2. name that function g(x) a. f(2) = b. g(4) = c. f'(2) = d. g'(4) = e. relationship between f'(x) and g'(x) 3. if the g(x) is the inverse of f(x), what is f(g(x))? 4. use chain rule to solve for g'(x)

1. a. x/2 b. 6 c. 3 d. 2 e. 1/2 f. reciprocals 2. g'(x) = √x a. 4 b. 2 c. 4 d. 1/4 e. reciprocals 3. x 4. g'(x) = 1 / f'(g(x)) --- derivative of inverse of a function definition

find dy/dx 1. 5x^2 + 2y^3 = 4 2. 5y^2 + 3 = x^2 3. sin(x + y) = 2x 4. 4x + 1 = cosy^2 5. 5x^2 - e^(4y^2) = -6 6. ln(y^3) = 5x + 3 7. x^2 = 4y^3 + 5y^2 8. 5x^3 - 2y = 5y^3 9. lny^2 + cos^2(x) = 1 - y 10. sin(y/2) + e^y = 4x 11. x^3 + y^3 = 6xy 12. x / siny = 5 13. lnx * e^(3y) = 2y^2

1. dy/dx = -5x / 3y^2 2. dy/dx = x / 5y 3. dy/dx = 2sec(x + y) - 1 4. dy/dx = -2csc(y^2) / y 5. dy/dx = 5x / 4ye^(4y^2) 6. dy/dx = 5y/3 7. dy/dx = x / 6y^2 + 5y 8. dy/dx = 15x^2 / 15y^2 + 2 9. dy/dx = 2cosxsinx / ((2/y) + 1) 10. dy/dx = 4 / ((1/2)cos(1/2) + e^y) 11. dy/dx = (2y - x^2) / (y^2 - 2x) 12. dy/dx = tany / x 13. dy/dx = (-e^3y) / (x(3lnxe^3y - 4y))

find the derivative 1. f(x) = (x^2 - 5)^4 2. g(x) = √(4x - 3) 3. h(x) = sin^2(5x) 4. y = ln(x^3) 5. y = ln(x^3) 6. f(x) = ((t^2 + 1) / (2t - 5))^3

1. f'(x) = 8x(x^2 - 5)^3 2. g'(x) = 2/√4x - 3 3. h'(x) = 10sin5xcos5x 4. dy/dx = 3/x 5. dy/dx = 3/x 6. f'(x) = (6(t^2 + 1)^2 * (t^2 - 5t - 1)) / (2t - 5)^4

composite functions: for f(g(x)), find f(x) and g(x) 1. sin(x^2) 2. √lnx 3. cos(sin(5x))

1. f(x) = sinx; g(x) = x^2 2. f(x) = √x; g(x) = lnx 3. for this one it is f(g(h(x))): f(x) = cosx; g(x) = sinx; h(x) = 5x

find the derivative of each function 1. g(x) = (3x^2 - 1)^5 2. y = sin2x 3. h(r) = ^3√(5r^2 - 2r + 1) 4. y = √(4 - cos(x^2)) 5. h(x) = ln(5^x) 6. g(x) = ln(2x^3) 7. f(x) = √(tan(2x)) 8. y = cos^2(x) 9. y = 1/((7x^2 - 1)^2) 10. f(x) = 3^(√x) 11. y = sin^3(4x) 12. y = e^(√(1 - cox)) 13. g(x) = e^(cos(7x^3)) 14. h(x) = sin(ln(x^5))

1. g'(x) = 30x(3x^2 - 1)^4 2. dy/dx = 2cos2x 3. h'(r) = (10r - 2)/(3*^3√((5r^2 - 2r + 1)^2)) 4. dy/dx = (2xsinx^2)/(2√4-cosx^2) 5. h'(x) = ln5 6. g'(x) = 3/x 7. f'(x) = (2sec^2(2x)) / (2√tan2x) 8. dy/dx = -2cosxsinx 9. dy/dx = -28x / (7x^2 - 1)^3 10. f'(x) = (3^(√x)ln3) / (2√x) 11. 12sin^2(4x)cos(4x) 12. (sinxe^(√(1 - cosx))) / (2√(1 - cosx)) 13. g'(x) = -21x^2sin(7x^3)e^(cos(7x^3)) 14. h'(x) = (5cos(lnx^5)) / x

three ways to say the same thing about inverses:

1. g(x) is the inverse of f(x) 2. g(x) = f^(-1)(x) 3. f(g(x)) = x and g(f(x)) = x

1. h(x) = ((x+5) / (x^2 + 2))^2; h'(x) = 2. g(x) = sin(tan(2x)); g'(x) = 3. x^2 - y^2 = 25; dy/dx = 4. x^3 + y^3 = 6xy - 1; dy/dx = 5. equation of line tangent to (y - 3)^2 = 4(x - 5) at (6,1)

1. h'(x) = (2((x + 5)/(x^2 + 2))^2)*(((x^2 + 2) - (2x^2 + 10x)) / (x^2 + 2)^2) 2. g'(x) = 2cos(tan(2x))(sec^2(2x)) 3. dy/dx = x/y 4. dy/dx = (6y - 3x^2) / (3y^2 - 6x) 5. y - 1 = -x + 6

if f(x) = (1 + x/20)^5, find f''(40)

1.350

finding the 2nd derivative: y = √x + x^(-2) dy/dx = d^(2)y/dx^2 =

1/2√x - 2/x^3 -1/4x^(-3/2) + 6x^-4

for each problem, let f and g be differentiable functions where g(x) = f^-1(x) for all x. 5. f(6) = -1, f(4) = -2, f'(6) = 3, f'(4) = 7. whats the value of g'(-1) 6. let f be the function defined by f(x) = x^3 + 3x + 1. let g(x) = f^-1(x), where g(-3) = -1. what s the value of g'(-3)?

1/3 1/6

reciprocal notation: x^-1 =

1/x

find the tangent line equation of the curve at the given point 11. y = arcsin(x) at the point where x = √2/2 12. y = cos^(-1)(4x) at the point where x = √3/8 13. y = arctan(3x^2) at the point where x = √3/3 14. y = sin^(-1)(5x) at the point where x = -√3/10 15. y = arches(x) at the point where x = -√2/2 16. y = arctan(x) at the point where x = √3

11. y - π/4 = √2(x - √2/2) 12. y - π/6 = -8(x - √3/8) 13. y - π/4 = √3(x - √3/3) 14. y + π/3 = 10(x + √3/10) 15. y - 3π/4 = -√2(x + √2/2) 16. y - π/3 = 1/4(x - √3)

for each function g(x), its inverse g^(-1)(x) = f(x). evaluate the given derivative 13. g(x) = cos(x) + 3x^2; g(π/2) = 3π/4; find f'(3π/4) 14. g(x) = 2x^3 - x^2 - 5x; g(-2) = -10; find f'(-10) 15. g(x) = √(8 - 2x). find f'(4) 16. g(x) = x^3 - 7. find f'(20) 17. g(x) = 5 / (x + 3). find f'(1/2)

13. 1/(3π - 1) 14. 1/23 15. -4 16. 1/27 17. -20

find the slope of the tangent line at the given point 14. 2 = 3x^4 + xy^4 at (-1,1) 15. xlny = 4 - 2x at (2,1) find the equation of the tangent line at the given point 16. x^2 + y^2 + 19 = 2x + 12y at (4,3) 17. xsin2y = ycos2x at (π/4, π/2) find the equations of all horizontal and vertical tangent lines. calculator allowed (round to 3 decimals) 18. x^2 + x + 2y^2 = 8 19. x + y = y^2

14. -11/4 15. -1 16. y - 3 = x - 4 17. y - π/2 = 2(x - π/4) 18. horizontal: y = +/-2.031; vertical: x = -3.372 and 2.372 19. horizontal: none; vertical: x = -1/4

find f'(5) given the following: x: 5, 9 g(x): 9, 2 g'(x): 6, -3 h(x): 5, -4 h'(x): -4, 1 15. f(x) = h(g(x)) 16. f(x) = (h(x))^2 17. f(x) = √g(x) 18. f(x) = 2g(x)h(x) 19. f(x) = 1 / h(x) 20. f(x) = g(h(x))

15. 6 16. -40 17. 1 18. -12 19. 4/25 20. -24

20. find the slope of the normal line to y = x + cos(xy) at (0,1) 21. the graph of f(x), shown below, consists of a semicircle and two line segments. the semi circle crosses the x axis at -2 and 2, and the y axis at 2, the line segments create a point at (4,2) (first has a slope of 1 starting at (0,2) and ending that the point, the other line starts at the point and ends at (0,6) with a slope of -1; f'(1) = 22. find the value(s) of dy/dx of x^2y + y^2 = 5 at y = 1

20. -1 21. -1/√3 22. +/-2/3

find d^2y/dx^2 based on the given information 7. y = x^5 - e^4x 8. y = y^2 + x 9. find the equation of the tangent line. x^2 + 7y^2 = 8y^3 at (-6,2) 10. if x = y^2 - cosx find d^2y/dx^2 at (π/6,1/2)

20x^3 - 16e^4x 2/(1-2y)^3 y - 2 = -3/17(x+6) (-√3 - 1) / 2

find the slope of the tangent line at the given x-value 21. h(x) = (3x - 4)^2 / x at x = -2 22. g(x) = cos(tanx) at x = π find the equation of the tangent line at the given x-value 24. f(x) = √(x^2 - 9) at x = 5 25. g(x) = e^(x^2) at x = 1 26. y = sin^2(3x) at x = π/4

21. 5 22. 0 24. y - 4 = 5/4(x - 5) 25. y - e = 2e(x - 1) 26. y - (1/2) = -3(x - π/4)

find the derivative of the following: f(x) = 3x^7 - 4x^3 + 5x f'(x) = f''(x) = f'''(x) = f^(4)(x) =

21x^6 - 12x^2 + 5 126x^5 - 24x 630x^4 - 24 2520x^3

28. let f(x) = 2e^3x and g(x) = 5x^3. at what value of x do the graphs of f and g have parallel tangents? 29. let f be the function given by f(x) = 5e^3x^3. for what positive value of a is the slope of the line tangent to the graph of f at (a, f(a)) equal to 6? 30. let f(x) = √2x. if the rate of change of f at x = c is four times its rate of change at x = 1, then c = 31. let f(x) = x*g(h(x)) where g(4) = 2, g'(4) = 3, h(3) = 4, and h'(3) = -2. find f'(3).

28. -0.366 29. 0.344 30. 1/16 31. -16

find the derivative of the following: y = 4√x dy/dx = d^2y/dx^2 =

2x^(-1/2) -1/√x^3

simplify the following expressions. 4. 9x^2/(I3x^3I√(9x^6 - 1)) 5. 4x/(I2x^2I√(4x^2 - 1))

4. 3/(IxI√(9x^6 - 1)) 5. 2/(x√(4x^2 - 1))

4. find all horizontal tangent lines of the graph 3x^2 + 2y^2 = 16 5. find all vertical tangent lines of the graph 3x^2 + 2y^2 = 16

4. y = +/-√8 5. x = +/-√(16/3)

the table below gives the values of the differentiable function g and its derivative g' at selected values of x. let h(x) = g^(-1)(x). x: -1, -2, -3, -4, -5 g(x): -2, -5, -4, -3, -1 g'(x): -4, -2, -1, -5, -3 5. find h'(-1); find the equation of the tangent line to g^(-1) at x = -1 6. h'(-3); find the equation of the tangent line to g^(-1) at x = -3 7. h'(-5); find the equation of the tangent line to g^(-1) at x = -5

5. -1/3; y + 5 = -1/3(x + 1) 6. -1/5; y + 4 = -1/5(x + 3) 7. -1/2; y + 2 = -1/2(x + 5)

given f(x) = 3x^2 - x + 2, g(x) = 1/x^3, and h(x) = √x. find the following 20. f''(2) 21. g'''(-3) 22. 2h''(4)

6 -20/243 -1/16

evaluate each function at the given x-value. 6. f(x) = arcsinx at x = √3/2 7. f(x) = cos^(-1)(x/4) at x = -2 8. f(x) = arctan at x = 1/√3

6. π/3 7. 2π/3 8. π/6

finding the 2nd derivative f(x) = x^6 - 2x^4 + 5x^2 - 3x + 9 f'(x) = f''(x) = f'''(x) = f^(4)(x) =

6x^5 - 8x^3 + 10x - 3 30x^4 - 24x^2 + 10 120x^3 - 48x 360x^2 - 48

f and g are differentiable functions. use the table to answer the problem below. f and g are not inverses! x: 1, 2, 3, 4, 5, 6 f(x): 5, 1, 6, 2, 3, 4 f'(x): -5, -6, 4, 9, 1, 2 g(x): 4, 3, 1, 6, 1, 2 g'(x): 5, 3, 6, 1, 2, 4 8. g^(-1)(4) 9. f^(-1)(5) 10. d/dxg^(-1)(3) 11. d/dxf^(-1)(1) 12. find the line tangent to the graph of f^(-1)(x) at x = 2

8. 1 9. 1 10. 1/3 11. -1/6 12. y - 4 = 1/9(x - 2)

what procedures for finding the derivative have you learned so far this year? Unit 2: Unit 3:

Unit 2: powder rule, constant, constant multiple, sum/difference, trig, exponential, logarithm, product rule, quotient rule Unit 3: chain rule, implicit differentiation, inverse, inverse trig

the functions f and g are differentiable for all real numbers and g is strictly increasing. the table below gives values of the functions and their first derivatives at selected values of x. the function h is given by h(x) = f(g(x)) - 6. x: 1, 2, 3, 4 f(x): 6, 9, 10, -1 f'(x): 4, 2, -4, 3 g(x): 2, 3, 4, 6 g'(x): 5, 1, 2, 7 a. explain why there must be a value r for 1<r<3 such that h(r) = 5 b. If g^(-1) is the inverse function of g, write an equation for the line tangent to the graph of y = g^(-1)(x) at x = 2

a. h(1) = 3 h(3) = -7 because of the IVT, h(r) = -5 b. y - 1 = 1/5(x-2)

the chain rule

aka: derivative of a composite function (d/dx)f(g(x)) = f'(g(x))*g'(x)

1. y^3 - 2x = x^4 + 2y 2. sin(xy) = 10x

dy/dx = (4x^3 + 2) / (3y^2 - 2) dy/dx = (10sec(xy) - y) / x

implicit differentiation example: find dy/dx for y^2 - 5x^3 = 3y

dy/dx = 15x^2 / 2y - 3

8. given the following table values. find f'(4) for each function x: 3, 4 g(x): -1, 3 g'(x): 7, -2 h(x): -2, 9 h'(x): -3, 5 f(x) = (g(x))^2 f(x) = √h(x) f(x) = h(g(x))

f'(4) = -12 f'(4) = 5/6 f'(4) = 6

7. if g(x) = 2x√1 - x. find g'(-3)

g'(-3) = 11/2

notation: the inverse of a trig function x may be indicated using the...

inverse function f^(-1) or with the prefix "arc" (ex: sin^(-1)x = arcsinx)

inverse notation: f^(-1)(x) means...

inverse of f

if it starts with "s"...

it has subtraction and a square root in addition: if the "i" is the second letter, the 1 is first; if the "e" is the second letter, the 1 is second if the "c" is third, aww crap there is an absolute value

2nd derivative with implicit differentiation find d^(2)y/dx^2 for siny = x + y

siny/(cosy - 1)^3

a function's inverse is found by...

swapping the input (x) and output (y) values

1. if f(x) = x^(2)lnx, then f'(x) = 2. if f and g are functions such that f(g(x)) = x for all x in their domains, and if f(a) = b and f'(a) = c, then which of the following is true? 3. find the equation of the tangent line to 9x^2 + 16y^2 = 52 through (2,-1) 4. what is the slope of the line tangent to the curve y = arctan(2x) at the point when x = 1/2? 5. if f(x) = (3x^2 + x)/(3x^2 - x), then f'(x) is 6. if f(x) = √(1 + √(x)), find f'(x). 7. a curve is generated by the equation x^2 + 4y^2 = 16. determine the number of points on the curve whose corresponding tangent lines are horizontal 8. d/dx(ln(3x)5^(2x)) = 9. let a function f be defined as f(x) = x^3 - 2x - 4 for x>=1. let g(x) be the inverse function of f(x) and note that f(2) = 0. the value of g'(0) = 10. d/dx(sin^(-1)x + 2√x) =

x + 2xlnx g'(b) = 1/c 9x - 8y - 26 = 0 1 -6/(3x-1)^2 1/(4√(x)√(1+√x)) 2 5^(2x)/x + 2ln(5)ln(3x)5^(2x) 1/10 1/(√1-x^2) + 1/√x

implicit equation example

x^2 + y^2 = 16

27. the graph of the function f is shown at the right (the graph has a slope of 1/2 and a y intercept at 3.5) the function h is defined by h(x) = f(2x^2 - x). find the slope of the tangent line to the graph of h at the point where x = -1

y - 2 = 5/2(x + 1)

let g be the function given by g(x) = cos(-x) - sinx + 6. which of the following statements is true for y = g(x)?

y - 6 = d^4y/dx^4

find the equation of all tangent lines for x^2 + y^2 = 4 when x = 1

y - √3 = (-1/√3)(x-1) y + √3 = (1/√3)(x-1)

explicit equation example

y = x + 16

notation: y, f(x), y 1st derivative: 2nd derivative: 3rd derivative: nth derivative:

y', f'(x), dy/dx y'', f''(x), d^(2)y/dx^2 y''', f'''(x), d^(3)y/dx^3 y^(n), f^(n)(x), d^(n)y/dx^n

if lim h--^ 0 arccos(a+h) - arccos(a) / h = 3, which of the following could be the value of a?

√8 / 3


Related study sets

271-12-4 Using Positive and Negative Numbers, Decimals, and Fractions

View Set

21-23 Cryptography and Endpoint Protection Group Exam

View Set

Chp 38: Care of Survivors of Abuse and Violence

View Set

Saunders Fluid & Electrolyte Practice Questions-EXAM 2

View Set

Abeka American Literature App Quiz HH

View Set

NUR 424 MEDSURG QUIZ on Immune Deficiency (chapter 36)

View Set

Nurse Practice Act and Legal Liability

View Set

Geology Chapter 7 - Sedimentary environments and rocks

View Set