AP bio unit 4

¡Supera tus tareas y exámenes ahora con Quizwiz!

Damaged tissue releases chemicals that activate platelets and stimulate the formation of blood clots. Which of the following predictions about the activity of platelets best describes a positive feedback mechanism?

Activated platelets release chemicals that activate more platelets.

In a certain signal transduction pathway, the binding of an extracellular molecule to a cell-surface protein results in a rapid increase in the concentration of cyclic AMP inside the cell. The cyclic AMP binds to and activates cytosolic enzymes that then activate other enzymes in the cell. Which of the following statements best describes the role of cyclic AMP in the signal transduction pathway?

C It acts as a second messenger that helps relay and amplify the signal within the cell.

During a fight-or-flight response, epinephrine is released into the body's circulatory system and transported throughout the body. Some cells exhibit a response to the epinephrine while other cells do not. Which of the following justifies the claim that differences in components of cell signaling pathways explain the different responses to epinephrine?

Cell signaling depends on the ability to detect a signal molecule. Not all cells have receptors for epinephrine. Only cells with such receptors are capable of responding.

An antigen can induce an immune response in a host organism. Antigens are targeted by antibodies that are produced by the organism's immune system in response to contact with the antigen. Antibodies are specific to antigens. Many different cell types are involved in immune responses. Which of the following best describes the role of cell-to-cell communication during a response to an invasion of antigens?

Chemicals that are secreted from antigen-presenting cells then activate helper T cells.

Based on the model of eukaryotic cell cycle regulation shown in the figure, which of the following best describes the effect of a drug that blocks the production of the mitotic cyclin?

D The cell would be prevented from entering mitosis, and the cell would stop dividing.

The epinephrine signaling pathway plays a role in regulating glucose homeostasis in muscle cells. The signaling pathway is activated by the binding of epinephrine to the beta-2 adrenergic receptor. A simplified model of the epinephrine signaling pathway is represented in Figure 1. Figure 1. A simplified model of the epinephrine signaling pathway in muscle cells Which of the following outcomes will most likely result from the irreversible binding of GDP to the G protein?

The intracellular concentration of glycogen will increase.

The beta-2 adrenergic receptor is a membrane-bound protein that regulates several cellular processes, including the synthesis and breakdown of glycogen. The receptor binds specifically to the hormone epinephrine. The binding of epinephrine to the beta-2 adrenergic receptor triggers a signal transduction cascade that controls glycogen synthesis and breakdown in the cell. A simplified model of the signal transduction cascade is represented in Figure 1.

The rate of glycogen synthesis in the cell will increase.

What is the expected percent change in the DNA content of a typical eukaryotic cell as it progresses through the cell cycle from the start of the G1 phase to the end of the G2 phase?

+100%

Researchers determined the average amount of time that a particular type of eukaryotic cell spends in each phase of the cell cycle. The data collected by the researchers are represented in Figure 1. Figure 1. The average amount of time spent by a particular type of eukaryotic cell in each phase of the cell cycle Based on Figure 1, what percent of the time required to complete a full cycle do the cells typically spend in interphase?

95

signal transduction pathway

A series of steps linking a mechanical, chemical, or electrical stimulus to a specific cellular response.

Metaphase

Chromosomes line up in the middle of the cell

Which of the following best describes the role of mitosis in the cell cycle?

Distributing replicated chromosomes to daughter nuclei

Cytokinesis

Division of the cytoplasm during cell division

he epinephrine signaling pathway plays a role in regulating glucose homeostasis in muscle cells. The signaling pathway is activated by the binding of epinephrine to the beta-2 adrenergic receptor. A simplified model of the epinephrine signaling pathway is represented in Figure 1. Figure 1. A simplified model of the epinephrine signaling pathway in muscle cells A researcher claims that the epinephrine signaling pathway controls a catabolic process in muscle cells. Which of the following statements best helps justify the researcher's claim?

Glycogen phosphorylase catalyzes the conversion of glycogen to glucose-1-phosphate.

Signal transduction may result in changes in gene expression and cell function, which may alter phenotype in an embryo. An example is the expression of the SRY gene, which triggers the male sexual development pathway in mammals. This gene is found on the Y chromosome. Which statement provides the evidence to justify the claim that signal transduction may result in an altered phenotype?

If the SRY gene is absent or nonfunctional, the embryo will exhibit female sexual development.

Cancer cells behave differently than normal body cells. For example, they ignore signals that tell them to stop dividing. Which of the following conditions will most likely cause a normal body cell to become a cancer cell?

The environment contains mutagens that induce mutations that affect cell-cycle regulator proteins.

The relative amount of DNA in a cell at various stages of the cell cycle is shown in Figure 1 . Figure 1. Amount of DNA per cell during different stages of the cell cycle, relative to the beginning of the G1 stage Which of the following best describes how the amount of DNA in the cell changes during M phase?

he amount of DNADNA is halved as the cell divides into two daughter cells.

Metformin is a drug used to treat type 2 diabetes by decreasing glucose production in the liver. AMP-activated protein kinase (AMPK) is a major cellular regulator of glucose metabolism. Metformin activates AMPK in liver cells but cannot cross the plasma membrane. By blocking AMPK with an inhibitor, researchers found that AMPK activation is required for metformin to produce an inhibitory effect on glucose production by liver cells. Which of the following best describes the component that metformin represents in a signal transduction pathway that regulates glucose production in the liver?

it is a ligand that activates the signal transduction pathway of the activation of AMPK.

Telophase

phase of mitosis in which the distinct individual chromosomes begin to spread out into a tangle of chromatin

Anaphase

the third phase of mitosis, during which the chromosome pairs separate and move toward opposite poles

Glycogen synthetase kinase 3 beta is a protein kinase that has been implicated in many types of cancer. Depending on the cell type, the gene for glycogen synthetase kinase 3 beta (GSK3β) can act either as an oncogene or as a tumor suppressor. Which of the following best predicts how GSK3β mutations can lead to the development of cancer?

Cells with inactive GSK3β fail to trigger apoptosis.

The epinephrine signaling pathway plays a role in regulating glucose homeostasis in muscle cells. The signaling pathway is activated by the binding of epinephrine to the beta-2 adrenergic receptor. A simplified model of the epinephrine signaling pathway is represented in Figure 1. Figure 1. A simplified model of the epinephrine signaling pathway in muscle cells Which of the following statements best describes the role of adenylyl cyclase in the epinephrine signaling pathway?

It accelerates the production of a second messenger.

Ethylene causes fruits to ripen. In a signaling pathway, receptors activate transcription factors, which ultimately leads to ripening. Which of the following best supports the claim that ethylene initiates the signal transduction pathway that leads to ripening of fruit?

Loss-of-function mutations in ethylene receptors result in changes to the ripening process.

A hydrophilic peptide hormone is produced in the anterior pituitary gland located at the base of the brain. The hormone targets specific cells in many parts of the body. Which of the following best explains a possible mechanism that would enable the hormone to efficiently reach all of the target cells in the body?

The hormone is released into the bloodstream where it can be transported to all cells with the correct receptors.

Vertebrate immune responses involve communication over short and long distances. Which of the following statements best helps explain how cell surface proteins, such as MHC proteins and T cell receptors, mediate cell communication over short distances?

The proteins interact directly with proteins on the surfaces of other cells.

The coagulation cascade controls blood clot formation in response to blood vessel injury. Thrombin is an enzyme that plays a key role in regulating the coagulation cascade. A simplified model of thrombin's role in regulating the coagulation cascade is represented in Figure 1. Figure 1. A simplified model of thrombin's role in regulating the coagulation cascade Argatroban is a competitive inhibitor of thrombin. Which of the following effects on the coagulation cascade is most likely to result from inhibiting thrombin activity with argatroban?

The rate of fibrin formation will decrease.

Two types of cholesterol transport proteins, low-density lipoproteins (LDL) and high-density lipoproteins (HDL), bind to cholesterol and carry it through the bloodstream. Familial hypercholesterolemia (FH) is characterized by high cholesterol levels in the blood, which can lead to cardiovascular disease. FH is associated with a loss-of-function mutation of a gene that encodes LDL receptors in liver cells. Individuals who are heterozygous produce lower-than-normal amounts of the LDL receptors, and individuals who are homozygous for the mutant allele have no LDL receptor function. Individuals with FH can be treated with drugs that result in increased production of LDL receptors in liver cells. Which of the following best explains the observation that the drugs can effectively control blood cholesterol levels in individuals who are heterozygous but are not effective in individuals homozygous for the mutant allele?

There must be at least one copy of the wild-type LDL receptor allele to produce functional LDL receptors.

The mechanism of action of many common medications involves interfering with the normal pathways that cells use to respond to hormone signals. Which of the following best describes a drug interaction that directly interferes with a signal transduction pathway?

medication enters the target cell and inhibits an enzyme that normally synthesizes a second messenger.

Apoptosis

programmed cell death

A student claims that the Y chromosome contains the sex-determining region gene, known as the SRY gene, which causes male fetuses to develop testes. Which of the following provides correct information about cell signaling that supports the claim?

A The SRYSRY gene produces a protein that binds to specific regions of DNADNA in certain tissues, which affects the development of these tissues.

In mammals, an increase in the concentration of sodium in the blood triggers the release of antidiuretic hormone (ADH) from the pituitary gland. As the concentration of sodium in the blood returns to previous levels, the release of ADH from the pituitary gland is reduced. Based on the information presented, which of the following describes the most likely role of ADH in maintaining blood osmolarity?

ADH promotes an increase in the movement of water into the bloodstream.

A person's blood glucose level fluctuates during the day, as represented in Figure 1. Two hormones, insulin and glucagon, are directly involved in regulating the blood glucose level to maintain a healthy level. Insulin acts to lower the blood glucose level, and glucagon acts to increase the blood glucose level. Figure 1. Blood glucose fluctuations of an individual Which of the following best predicts what will happen to the blood glucose level if the person has another meal at 5 p.m.?

B Immediately after the meal, the blood glucose level will increase, and then insulin will be secreted to counter the increase.

Figure 1 represents the relative time and sequence of the phases of the cell cycle. Figure 1. Representation of the cell cycle and identification of the G1/S checkpoint Which statement best predicts why a cell's progression through the cell cycle might be halted at the G1/S checkpoint?

B There are not enough nucleotides available to construct new DNA

Notch is a receptor protein displayed on the surface of certain cells in developing fruit fly embryos. Notch's ligand is a membrane-bound protein called Delta that is displayed on the surface of adjacent cells. When Notch is activated by its ligand, the intracellular tail of the Notch protein becomes separated from the rest of the protein. This allows the intracellular tail to move to the cell's nucleus and alter the expression of specific genes. Which of the following statements best explains Delta's role in regulating cell communication through the Notch signaling pathway?

C Delta restricts cell communication to short distances within a developing embryo.

Researchers grew seedlings of corn, Zea mays, in loose and compact sand. The researchers measured the amount of time required for the cells in the growing root tips of the seedlings to double in number. The mean cell doubling times for the two groups of seedlings are shown in Figure 1. Figure 1. Mean cell doubling times for the growing root tips of Zea mays seedlings planted in loose or compact sand Based on the sample means, which of the following conclusions about the cells in the growing root tips of Zea mays seedlings is best supported by the results of the experiment?

D More cells are produced per unit of time in the root tips growing in compact sand than in the root tips growing in loose sand.

Blood clots are formed by a positive feedback loop. Two pathways exist, the extrinsic and intrinsic pathways, which converge during clot formation. There are many clotting factors involved, most of which are proteins. Vitamin K is required for the formation of the active form of several of the clotting factors, including Factor X. A simplified model of the blood clotting process is shown in Figure 1. Figure 1. Simplified model of clotting cascade Warfarin is a drug used to treat certain blood clots. Warfarin blocks the formation of the active form of vitamin K-dependent clotting factors. Based on the model, which of the following best predicts the effects of warfarin on a patient?

Factor X will not be activated, which will prevent thrombin from forming.

The epidermal growth factor receptor EGFR is a cell surface receptor. When a growth factor binds to EGFR, the receptor is activated. The activated EGFR triggers a signal transduction pathway, which leads to increased frequency of cell division. Which of the following best predicts the effect of a mutation that causes EGFR to be active in the absence of a growth factor?

Increased cell division will lead to the formation of a tumor.

In flowering plants, plasmodesmata are narrow channels through cell walls that connect the cytoplasms of adjacent cells. An explanation of how plant cells communicate across cell walls will most likely refer to the diffusion through plasmodesmata of which of the following?

Small, water-soluble molecules

Glucocorticoids are steroid hormones that control cellular responses through several different signaling pathways. One of the signaling pathways involves the glucocorticoid receptor, an intracellular protein that is activated by binding to a glucocorticoid molecule. A simplified model of the glucocorticoid receptor signaling pathway is represented in Figure 1. Figure 1. A simplified model of the glucocorticoid receptor signaling pathway Which of the following statements best predicts the effect of a mutation that results in a loss of the glucocorticoid receptor's ligand binding function?

The glucocorticoid receptor will remain associated with the accessory proteins.

Trypsinogen is split by the enzyme enterokinase to form an activated molecule of the protease trypsin. Which of the following would confirm that the activation of trypsin is an example of how a positive feedback mechanism can amplify a biological process?

The trypsin produced by the reaction is capable of splitting and activating additional trypsinogen molecules.

Researchers studying cell cycle regulation in budding yeast have observed that a mutation in the CDC15 gene causes cell cycle arrest in telophase when the yeast cells are incubated at an elevated temperature. Which of the following statements best predicts the effect of the cell cycle arrest on proliferating yeast cells?

The yeast cells will replicate their chromosomes but will fail to complete cytokinesis.

A student used microscopy to investigate the relative lengths of the different stages of mitosis. The student prepared slides of cells isolated from a growing onion root tip and viewed the slides under a dissecting microscope. The student then made diagrams of cells that were in different stages of mitosis and counted the number of cells that were in each of those stages. The student's data are presented in Table 1. Table 1. Number of cells in each of four different stages of mitosis Based on the data, the percent of the mitotic cells that were in metaphase is closest to which of the following?

18 percent

Insulin, a hormone secreted by pancreatic cells, stimulates glucose uptake in skeletal muscle cells by mobilizing glucose transporter proteins (GLUT4) to the plasma membrane. As depicted in Figure 1, binding of insulin to the insulin receptor triggers an intracellular signaling cascade in which certain molecules activate other molecules in a relay of the hormone signal to cell targets. One outcome of the signaling cascade is mobilization of GLUT4 from vesicle storage sites in the cytoplasm to sites at the cell surface, where GLUT4 allows glucose to enter the cell. In type 2 diabetes, the cellular response to insulin is disrupted, and individuals with type 2 diabetes cannot properly regulate their blood glucose levels. In an investigation of the insulin signaling pathway, samples of skeletal muscle were isolated from individuals who have type 2 diabetes and from individuals who do not. The results of several experiments that were performed on the muscle samples are shown in Figure 2, Figure 3, and Figure 4. Based on the information presented, which of the following genetic changes in an individual without diabetes is most likely to result in a disrupted cellular response to insulin signaling similar to that of an individual with type 2 diabetes?

A A deletion in the gene encoding the insulin receptor that removes only the cytoplasmic domain of the protein

Cancer can result from a variety of different mutational events. Which of the following is LEAST likely to result in the initiation of a cancerous tumor?

A defect in a cell-cycle checkpoint prevents a cell from entering the S phase.

Which of the following steps in a signaling pathway typically occurs first once a chemical messenger reaches a target cell?

A ligand binds to a receptor.

The diagram above represents a model of signal transduction pathways (I and II) in a cell that is targeted by two different hormones (H1 and H2). The components of the signal transduction pathways are identified in the figure legend. Each cellular molecule in both pathways can exist in an inactive or active form. When the components in pathway I are sequentially activated, the TAP molecules promote cell division. When the components in pathway II are sequentially activated, downstream signaling by the G protein is inhibited. Based on the model, which of the following mutations is most likely to result in a cell that will generate a cancerous tumor?

A mutation in the gene encoding G-PIP that results in a nonfunctional protein

Researchers have discovered details about apoptosis (programmed cell death) by studying embryologic development of a nematode worm, Caenorhabditis elegans. Apoptosis is a normal developmental process in C. elegans. They found several genes involved in apoptosis, including ced−9 and ced−3 . The ced−3 gene was found to promote cell death, and ced−9 to inhibit it. The ced−9 gene serves as a regulator that prevents apoptosis in the absence of a signal promoting apoptosis. Which of the following statements best justifies the claim that changes in the expression of ced−9 in C. elegans can affect regulation of apoptosis in the cell?

An experiment showed that a mutation in the ced−9ced−9 gene led to excessive cell death in C. elegans.

Excess intracellular iron is toxic to cells (iron-induced toxicity). Ferritin is an intracellular iron storage protein that binds excess iron. The presence of ferritin can protect cells from iron-induced toxicity. In an experiment to investigate the effects of dietary iron intake on ferritin synthesis, rats were given food containing different amounts of iron. Subsequently, the levels of ferritin protein in the liver were measured. The results are shown in Figure 1. Based on these and other data, researchers have developed the following model demonstrating how ferritin synthesis is regulated by iron. When iron levels are low, a repressor of translation, iron response protein (IRP), binds to an iron response element (IRE), which is a stem-loop structure near the 5¢ end of ferritin mRNA. When iron levels are high, intracellular iron binds to the IRP, and the iron-IRP complex dissociates from the IRE, permitting ribosomes to proceed with the translation of ferritin mRNA. Figure 2 represents the model of the regulation of ferritin mRNA translation by iron. Figure 2. Model of regulation of ferritin synthesis by iron Based on the model of ferritin synthesis presented in Figure 2, which of the following describes the role of feedback on the control of intracellular iron levels?

An increase in iron levels activates synthesis of ferritin protein. Ferritin protein in turn binds iron, thereby decreasing both free iron levels and ferritin synthesis.

The insulin receptor is a transmembrane protein that plays a role in the regulation of glucose homeostasis. The receptor's extracellular domain binds specifically to the peptide hormone insulin. The receptor's intracellular domain interacts with cellular factors. The binding of insulin to the receptor stimulates a signal transduction pathway that results in the subcellular translocation of GLUT4, a glucose transport protein that is stored in vesicles inside the cell. A simplified model of the insulin receptor-signaling pathway is shown in Figure 1.

B The storage of GLUT4 in vesicles inside the cell will increase.

A researcher examining a root tip observes a plant cell with condensed sister chromatids, kinetochores with attached microtubules, and individual chromosomes that are aligned at the equatorial plate of the cell. Which of the following best describes what the next process will be in the cell?

B Paired chromatids will separate, and the new daughter chromosomes will move toward opposite poles of the cell.

Figure 1 shows a model of a signal transduction cascade, initiated by the binding of a ligand to the transmembrane receptor protein A. Figure 1. Model of signal transduction cascade incorporating protein A A DNA mutation changes the shape of the extracellular domain of transmembrane receptor protein A produced by the cell. Which of the following predictions is the most likely consequence of the mutation?

B The molecule that normally binds to protein AA will no longer attach, deactivating the cellular response.

Researchers tracked the amount of DNA (measured in picograms) over time beginning with a single cell and continuing through several rounds of cell division. The researchers observed threadlike chromosomes prior to cell division. The threadlike chromosomes disappeared from view shortly after each division. The amount of DNA in picograms per cell over several rounds of cell division is shown in Figure 1. Figure 1. Amount of DNA in picograms per cell over several rounds of cell division Which of the following statements is consistent with the data in Figure 1?

C There is a change from 3 to 6 picograms of DNA because DNA is replicated before each round of cell division.

prophase

Chromosomes become visable, nuclear envelop dissolves, spindle forms

The epinephrine signaling pathway plays a role in regulating glucose homeostasis in muscle cells. The signaling pathway is activated by the binding of epinephrine to the beta-2 adrenergic receptor. A simplified model of the epinephrine signaling pathway is represented in Figure 1. Figure 1. A simplified model of the epinephrine signaling pathway in muscle cells A researcher claims that the epinephrine signaling pathway controls a catabolic process in muscle cells. Which of the following statements best helps justify the researcher's claim?

Glycogen phosphorylase catalyzes the conversion of glycogen to glucose-1-phosphate.

The epinephrine signaling pathway plays a role in regulating glucose homeostasis in muscle cells. The signaling pathway is activated by the binding of epinephrine to the beta-2 adrenergic receptor. A simplified model of the epinephrine signaling pathway is represented in Figure 1. Figure 1. A simplified model of the epinephrine signaling pathway in muscle cells Based on Figure 1, which of the following statements best describes the epinephrine signaling pathway?

In involves enzymes activating other enzymes.

The brain coordinates the circulatory and respiratory systems of the human body. The control of breathing, for example, involves neural pathways among the structures represented in the figure above. One important stimulus in the control of breathing is an increase in blood CO2 concentration, which is detected as a decrease in blood pH. Which of the following best describes the physiological response to an overall increase in cellular respiration in the body?

In response to low blood pH, the pH sensors send a signal to the brain, which then sends a signal to the diaphragm, resulting in an increased rate of breathing to help eliminate excess blood CO2 .

Figure 1 is a proposed model of the feedback system controlling erythrocyte (red blood cell) production. Figure 1. Model of erythrocyte production control Air is less dense at very high elevations, so less oxygen is available than in the denser air at sea level. Based on the model in Figure 1, if a person travels from sea level to a high elevation location, which of the following correctly predicts the response to the decreased blood oxygen level?

More erythropoietin will be secreted from the kidneys, increasing production of erythrocytes.

Phosphofructokinase (PFK) is a key enzyme in glycolysis. ATP is one of the two substrates for the reaction catalyzed by PFK. ATP is also an allosteric regulator of PFK. Figure 1 shows the enzyme-substrate interactions of PFK. Figure 1. The enzyme-substrate interactions of PFK A researcher found a mutation that resulted in the PFK enzyme being unable to bind ATP to the allosteric site. Which of the following best predicts the effect of the mutation?

Negative feedback regulation does not occur, so the enzyme will be active when glycolysis is not needed.

The epinephrine signaling pathway plays a role in regulating glucose homeostasis in muscle cells. The signaling pathway is activated by the binding of epinephrine to the beta-2 adrenergic receptor. A simplified model of the epinephrine signaling pathway is represented in Figure 1. Figure 1. A simplified model of the epinephrine signaling pathway in muscle cells Cyclic AMP phosphodiesterase is an enzyme that catalyzes the conversion of cyclic AMP to a different molecule. Which of the following best predicts the effect of inhibiting cyclic AMP phosphodiesterase in a muscle cell stimulated by epinephrine?

Phosphorylase kinase will remain active because protein kinase A will no longer be deactivated.

DNA replication occurs

S phase

A student claims that the Y chromosome contains the sex-determining region gene, known as the SRY gene, which causes male fetuses to develop testes. Which of the following provides correct information about cell signaling that supports the claim?

The SRY gene produces a protein that binds to specific regions of DNA in certain tissues, which affects the development of these tissues.

Fibroblast growth factor receptors (FGFRs) are transmembrane proteins that regulate cellular processes such as cell proliferation and differentiation. The extracellular domains of FGFR proteins bind specifically to signaling molecules called fibroblast growth factors. The intracellular domains of FGFR proteins function as protein kinases, enzymes that transfer phosphate groups from ATP to protein substrates. FGFR activation occurs when binding by fibroblast growth factors causes FGFR proteins in the plasma membrane to become closely associated with each other. The association of two FGFR proteins stimulates protein kinase activity, which triggers the activation of intracellular signaling pathways. A simplified model of FGFR activation is represented in Figure 1

The irreversible association of FGFR proteins

Which of the following best explains how small molecules move between adjacent cells in a plant shoot?

The molecules pass freely through plasmodesmata, which are cytoplasmic strands connecting two cells.

Adjacent plant cells have narrow channels called plasmodesmata that pass through the cell walls of the connected cells and allow a cytoplasmic connection between the cells. Which of the following statements best describes a primary function of plasmodesmata?

They allow the movement of molecules from one cell to another, enabling communication between cells.

The tumor suppressor protein p53 binds to DNA and activates target genes, which results in the synthesis of p21, CD95, and other proteins. The p21 protein promotes cell-cycle arrest, whereas the CD95 protein promotes apoptosis. Which of the following will most likely result from a loss of p53 function?

Uncontrolled cell proliferation

G proteins are a family of receptor proteins that are involved in transmitting signals from outside a cell to inside a cell. When a signaling molecule binds to a G protein, the G protein is activated. The G protein then activates an enzyme that produces a second messenger called cAMP. Which of the following describes a critical role of cAMP during the transduction stage of a G protein signal transduction pathway?

cAMP results in the activation of an enzyme that amplifies the signal by acting on many substrate molecules.


Conjuntos de estudio relacionados

Management Chapter 11 Organizational Control and Change.

View Set

Mastering Biology - 23.3-23.4 Review

View Set

RN Concept-Based Assessment Level 2 Online Practice B

View Set

NUTR Exam #1 Digestion and Absorption

View Set

virtual - fundamentals - basic care and comfort quiz

View Set