Chapter 9 Molecular Geometry and Bonding Theories

¡Supera tus tareas y exámenes ahora con Quizwiz!

Polarity of Molecules

Ask yourself: COVALENT or IONIC? If COVALENT: Are the BONDS polar? a. NO: The molecule is NONPOLAR! b. YES: Continue—Do the AVERAGE position of δ+ and δ- coincide? 1) YES: The molecule is NONPOLAR. 2) NO: The molecule is POLAR. NOTE: Different atoms attached to the central atom have different polarity of bonds.

Shapes of Larger Molecules

For larger molecules, look at the geometry about each atom rather than the molecule as a whole.

Boron—Three Electron Domains Gives sp2 Hybridization

Using a similar model for boron leads to three degenerate sp2 orbitals.

Valence-Shell Electron-Pair Repulsion (VSEPR) Model

"The best arrangement of a given number of electron domains is the one that minimizes the repulsions among them." (The balloon analogy in the figure to the left demonstrates the maximum distances, which minimize repulsions.)

6. Predict whether these molecules are polar or nonpolar:

(a)BrCl (b) (c) CH3Cl (d) SO2 (e)

Octahedral Electron Domain

*All positions are equivalent in the octahedral domain with 90° *There are three molecular geometries: -Octahedral -Square pyramidal -Square planar

Localized or Delocalized Electrons

*Bonding electrons (σ or π) that are specifically shared between two atoms are called localized electrons. *In many molecules, we can't describe all electrons that way (resonance); the other electrons (shared by multiple atoms) are called delocalized electrons.

Multiple Bonds and Bond Angles

*Double and triple bonds have larger electron domains than single bonds. *They exert a greater repulsive force than single bonds, making their bond angles greater.

Types of Bonds

*How does a double or triple bond form? *It can't, if we only use hybridized orbitals. *However, if we use the orbitals which are not hybridized, we can have a "side-ways" overlap. *Two types of bonds: *Sigma (σ) bond *Pi (π) bond

Hybrid Orbitals

*Hybrid orbitals form by "mixing" of atomic orbitals to create new orbitals of equal energy, called degenerate orbitals. *When two orbitals "mix" they create two orbitals; when three orbitals mix, they create three orbitals; etc.

Valence-Bond Theory

*In Valence-Bond Theory, electrons of two atoms begin to occupy the same space. *This is called "overlap" of orbitals. *The sharing of space between two electrons of opposite spin results in a covalent bond.

Linear Electron Domain

*In the linear domain, there is only one molecular geometry: linear. *NOTE: If there are only two atoms in the molecule, the molecule will be linear no matter what the electron domain is.

Overlap and Bonding

*Increased overlap brings the electrons and nuclei closer together until a balance is reached between the like charge repulsions and the electron-nucleus attraction. *Atoms can't get too close because the internuclear repulsions get too great.

Molecular Shapes

*Lewis Structures show bonding and lone pairs, but do not denote shape. *However, we use Lewis Structures to help us determine shapes. *Here we see some common shapes for molecules with two or three atoms connected to a central atom.

sp Orbitals

*Mixing the s and p orbitals yields two degenerate orbitals that are hybrids of the two orbitals. -These sp hybrid orbitals have two lobes like a p orbital. -One of the lobes is larger and more rounded, as is the s orbital.

Nonbonding Pairs and Bond Angle

*Nonbonding pairs are physically larger than bonding pairs. *Therefore, their repulsions are greater; this tends to compress bond angles.

Molecular Geometries

*Once you have determined the electron-domain geometry, use the arrangement of the bonded atoms to determine the molecular geometry. *Tables 9.2 and 9.3 show the potential molecular geometries. We will look at each electron domain to see what molecular geometries are possible.

Expanding beyond the Octet Rule

*Remember that some elements can break the octet rule and make more than four bonds (or have more than four electron domains). *The result is two more possible electron domains: five = trigonal bipyramidal; six = octahedral (as was seen in the slide on electron-domain geometries).

Sigma (σ) and Pi (π) Bonds

*Sigma bonds are characterized by -head-to-head overlap. -cylindrical symmetry of electron density about the internuclear axis. *Pi bonds are characterized by -side-to-side overlap. -electron density above and below the internuclear axis.

What Determines the Shape of a Molecule?

*Simply put, electron pairs, whether they be bonding or nonbonding, repel each other. *By assuming the electron pairs are placed as far as possible from each other, we can predict the shape of the molecule. *This is the Valence-Shell Electron-Pair Repulsion (VSEPR) model.

Bonding in Molecules

*Single bonds are always σ-bonds. *Multiple bonds have one σ-bond, all other bonds are π-bonds.

Electron-Domain Geometries

*The Table shows the electron-domain geometries for two through six electron domains around a central atom. *To determine the electron-domain geometry, count the total number of lone pairs, single, double, and triple bonds on the central atom.

Hypervalent Molecules

*The elements which have more than an octet *Valence-Bond model would use d orbitals to make more than four bonds. *This view works for period 3 and below. *Theoretical studies suggest that the energy needed would be too great for this. *A more detailed bonding view is needed than we will use in this course.

Trigonal Bipyramidal Electron Domain 2

*There are four distinct molecular geometries in this domain: -Trigonal bipyramidal -Seesaw -T-shaped -Linear

Tetrahedral Electron Domain

*There are three molecular geometries: -tetrahedral, if all are bonding pairs, -trigonal pyramidal, if one is a nonbonding pair, and -bent, if there are two nonbonding pairs.

Trigonal Bipyramidal Electron Domain 1

*There are two distinct positions in this geometry: -Axial -Equatorial *Lone pairs occupy equatorial positions.

Trigonal Planar Electron Domain

*There are two molecular geometries: -trigonal planar, if all electron domains are bonding, and -bent, if one of the domains is a nonbonding pair.

Position of sp Orbitals

*These two degenerate orbitals would align themselves 180° from each other. *This is consistent with the observed geometry of Be compounds (like BeF2) and VSEPR: linear.

More on MO Theory

*They differ from atomic orbitals because they represent the entire molecule, not a single atom. *Whenever two atomic orbitals overlap, two molecular orbitals are formed: one bonding, one antibonding. *Bonding orbitals are constructive combinations of atomic orbitals. *Antibonding orbitals are destructive combinations of atomic orbitals. They have a new feature unseen before: A nodal plane occurs where electron density equals zero.

VSEPR and Hybrid Orbitals

*VSEPR predicts shapes of molecules very well. *How does that fit with orbitals? *Let's use H2O as an example: *If we draw the best Lewis structure to assign VSEPR, it becomes bent. *If we look at oxygen, its electron configuration is 1s22s22p4. If it shares two electrons to fill its valence shell, they should be in 2p. *Wouldn't that make the angle 90°? *Why is it 104.5°?

Molecular Orbital (MO) Theory 1

*Wave properties are used to describe the energy of the electrons in a molecule. *Molecular orbitals have many characteristics like atomic orbitals: -maximum of two electrons per orbital -Electrons in the same orbital have opposite spin. -Definite energy of orbital -Can visualize electron density by a contour diagram

Electron Domains

*We can refer to the directions to which electrons point as electron domains. This is true whether there is one or more electron pairs pointing in that direction. * The central atom in this molecule, A, has four electron domains.

What Happens with Water?

*We started this discussion with H2O and the angle question: Why is it 104.5° instead of 90°? *Oxygen has two bonds and two lone pairs—four electron domains. *The result is sp3 hybridization!

Be—sp hybridization

*When we look at the orbital diagram for beryllium (Be), we see that there are only paired electrons in full sub-levels. *Be makes electron deficient compounds with two bonds for Be. Why? sp hybridization (mixing of one s orbital and one p orbital)

Hybrid Orbital Summary

1) Draw the Lewis structure. 2) Use VSEPR to determine the electron-domain geometry. 3) Specify the hybrid orbitals needed to accommodate these electron pairs.

Benzene

The organic molecule benzene (C6H6) has six σ-bonds and a p orbital on each C atom, which form delocalized bonds using one electron from each p orbital.

Molecular Orbital (MO) Theory 2

Whenever there is direct overlap of orbitals, forming a bonding and an antibonding orbital, they are called sigma (σ) molecular orbitals. The antibonding orbital is distinguished with an asterisk as σ*. Here is an example for the formation of a hydrogen molecule from two atoms.

Carbon: sp3 Hybridization

With carbon, we get four degenerate sp3 orbitals.


Conjuntos de estudio relacionados

Chapter 8: The Web Enabled Enterprise

View Set

2.10 Unit Test: Voices of an Emerging Nation - Part 1

View Set

Ch 14 Single-Case Exp Research Designs

View Set

Chapter 4: HIPAA Security Rule Concepts

View Set

Financial Accounting: Chapter 3-4 Practice Exam

View Set

Maternity Ch. 2, Maternity Ch. 8 Violence against women, Maternity Ch. 6 Women's health problem, Maternity Ch. 1, Maternity Ch. 3, Maternity Ch. 5, Maternity ch. 4, Maternity Ch. 7 Social Issues, Old's Maternity Ch. 10, Maternity Ch. 9

View Set