Linear Algebra Definitions

¡Supera tus tareas y exámenes ahora con Quizwiz!

characteristic polynomial

(for a matrix A) det (A-lambaI)

linear independence

(for a set of vectors) An indexed set {v1...vp} with the property that there exist weights c1...cp all equal to zero such that c1v1 +...+cpvp = 0

spanning set

(for a subspace H) any set {v1...vp} in H such that H = span {v1...vp}

change-of-coordinates matrix

(from a basis B to a basis C) a matrix that transforms B coordinate vectors into C coordinate vectors.

linear transformation

(from a vector space V into a vector space W): A rule T that assigns to each vector x in V a unique vector T(x) in W such that (i) T (u+v) = T(u) + T(v) (ii) T(cu) = cT(u) for all u in V and all scalars c

similar matrices

2 matrices A and B are similar if A = PBP^-1 for some invertible matrix P

one-to-one

A mapping T: R^n -> R^m is one-to-one if each b in R^m is the image of at most one x in R^n.

onto

A mapping T:R^n -> R^m is onto if each b in R^m is the image of at least one x in R^n.

diagonalizable matrix

A matrix that can be written in factored form as PDP^-1, where D is a diagonal matrix and P is an invertible matrix

eigenvalue

A scalar lambda such that Ax = lamba x has a solution for some nonzero vector x

subspace

A subspace of a vector space V is a subset H of V that has three properties: a. The zero vector of V is in H b. H is closed under vector addition. That is, for each u and v in H, the sum u+v is in H. c. H is closed under multiplication by scalars. That is, for each u in H and each scalar c, the vector cu is in H.

basis

An indexed set B = {v1...vp} in V such that (i) B is a linearly independent set and (ii) the subspace spanned by B coincides with H, that is, H = span {v1...vp}

elementary matrix

An invertible matrix that results by performing one elementary row operation on an identity matrix

column space

The column space of an m x n matrix A is the set of all linear combinations of the columns of A. Col A = span {a1, a2,... an} where ai represents a column of A

adjugate

The matrix adj A formed from a square matrix A by replacing the (i,j) entry of A by the (i,j) cofactor, for all i and j, and then transposing the matrix

null space

The null space of an m x n matrix A is the set of all solutions to Ax = 0

inner product

The scalar u^Tv, usually written as u.v , where u and v are vectors in R^n. also called the dot product

row space

The set Row A of all linear combinations of the vectors formed from the rows of A; also denoted by Col A ^T

transpose

The transpose of a matrix A (of dimension m x n) is the n x m matrix whose columns are the corresponding rows of A

eigenvector

a NONZERO vector x such that Ax = lamba x for some scalar lambda

isomorphism

a one-to-one linear mapping from one vector space onto another

orthonormal set

a set of vectors is orthonormal if it is an orthogonal set of unit vectors (all of the vectors dotted with each other vector is 0)

orthogonal matrix

a square matrix U such that U^-1 = U^T. such a matrix has orthonormal columns. any square matrix with orthogonal columns is an orthogonal matrix.

standard matrix

for a linear transformation T: R^n -> R^m, there exists a unique matrix A such that T(x) = Ax for all x in R^n. This is called the standard matrix. A = [T(e1) ... T (en)]

dimension

the dimension of V, written as dim V, is the number of vectors in a basis for V. the dimension of the zero vector space {0} is 0.

rank

the dimension of the column space of A

kernel

the kernel of a linear transformation T: V -> Wis the set of x in V such that T(x) = 0

orthogonal projection

the orthogonal projection of y onto u is [(y.u)/(u.u)](u)


Conjuntos de estudio relacionados

Chapter 5: Supporting the Power System and Troubleshooting Computers

View Set

Computer Networks and the Internet Practice Warm

View Set

CDC Volume 1. Air Force Emergency Management Program

View Set

Burden of Proof, Presumption, and Judicial Notice

View Set