Polar Coordinates, Polar Equations, & Parametric Equations
Convert (12, 195^degrees) to rectangular
(-11.59, -3.11)
Convert (-1, 4pi/3) to rectangular
(1/2, Squareroot3/2)
r=-4cosTheta+2sinTheta
(y-2)^2+(y-1)^2=5
Plot the point with the given polar coordinates-----> (2, -pi/4)
-45^degrees with a radius of 2 on the unit circle
Plot the point with the given polar coordinates-----> (-4, 4pi/3)
60^degrees with a radius of 4 on the unit circle
Airplane BIGfat1-8U is flying at coordinates (6, 115^degrees). Airplane BIgmaMa-4U is flying at coordinates (5, 20^degrees). How far apart are the airplanes. Use law of cosine to solve the problem.
a=8.138141346 Miles
x^2+(y-2)^2=4
r=4sinTheta
y=5x
tanTheta=5
r=2sin Theta
x^2+(y-1)^2=1
Convert the following polar equation to rectangular equations= r=5
x^2+y^2=25
Eliminate the parameter to write the parametric equations as a rectangular equation. x = 3 cos t, y = 3 sin t
x^2+y^2=9
Eliminate the parameter to write the parametric equations as a rectangular equation. x = 4 sin (2t), y = 2 cos (2t)
x^2/16+y^2/4=1
Eliminate the parameter to write the parametric equations as a rectangular equation. x = 6 - t, y = 3t - 4
y=+-Squareroot 14-3x
Eliminate the parameter to write the parametric equations as a rectangular equation. x = 1/t-2, y = 4t + 5
y=4+13x/x
Eliminate the parameter to write the parametric equations as a rectangular equation. x = 1⁄2t + 4, y = t3
y=8(x-4)^3