Algebra 2
Select the expression that is equivalent to LaTeX: x^3+216
(x+6)(x^2-6x+36)
Solve the equation: LaTeX: \sqrt{x+2}-3=2x
-1
Find the zeros of LaTeX: 5x^3-5x
-1, 0, 1
Write the following polynomial in standard form. LaTeX: 2x^2-3x^3+1 2 x 2 − 3 x 3 + 1
-3x^3+2x^2+1
Solve the equation: LaTeX: \sqrt{x+10}-7=-5
-6
Find the real number root: LaTeX: \sqrt[3]{-\frac{216}{512}}
-6/8
Find all the real cube roots of 0.000064.
0.04
Enter the probability as a decimal of getting four heads when tossing a coin four times.
0.0625
Let LaTeX: f\left(x\right)=3x^2+2 f ( x ) = 3 x 2 + 2 and LaTeX: g\left(x\right)=2x g ( x ) = 2 x , find LaTeX: f\left(g\left(x\right)\right) f ( g ( x ) )
12x^2+2
Solve the equation: LaTeX: \left(x-7\right)^{^{\frac{2}{3}}}=4
15, -1
Two sports teams, the Slugs and the Armadillos, are perfectly matched so that their chances of winning are both set at 50%. What is the probability that the Armadillos will win the next 4 out of 5 games? Round the answer to the nearest whole percent.
16
If LaTeX: f\left(x\right)=2x^2+x-7 f ( x ) = 2 x 2 + x − 7 and LaTeX: g\left(x\right)=-3x-1 g ( x ) = − 3 x − 1 find LaTeX: f\left(g\left(x\right)\right)
18x^2+9x-6
Enter the value of LaTeX: \frac{7!}{4!} 7 ! 4 ! .
210
Let LaTeX: f\left(x\right)=x^2+2x-1 f ( x ) = x 2 + 2 x − 1 and LaTeX: g\left(x\right)=2x-4 g ( x ) = 2 x − 4 , find LaTeX: 2f\left(x\right)-3g\left(x\right)
2x^2-2x+10
Select all possible values of LaTeX: x x for LaTeX: x^4-34x^2=-225 x 4 − 34 x 2 = − 225
3, -3, 5, -5
Enter the value of LaTeX: \frac{7!}{4!3!} 7 ! 4 ! 3 ! .
35
Let LaTeX: f\left(x\right)=3x^2+2x-8 f ( x ) = 3 x 2 + 2 x − 8 and LaTeX: g\left(x\right)=x+2 g ( x ) = x + 2 find LaTeX: \frac{f}{g} f g and its domain.
3x-4, all real numbers except x=-2
Divide: LaTeX: 3x^3-3x^2-4x+3 3 x 3 − 3 x 2 − 4 x + 3 by x+3
3x^2-12x+32\:R-93
Use synthetic division to find P(2) for LaTeX: P\left(x\right)=x^4+3x^3-6x^2-10x+8 P ( x ) = x 4 + 3 x 3 − 6 x 2 − 10 x + 8
4
Classify: LaTeX: -5x^3-2x^4 − 5 x 3 − 2 x 4 by degree and by number of terms.
4th degree binomial
Select all factors of LaTeX: 4x^4-21x^3-46x^2+219x+180 4 x 4 − 21 x 3 − 46 x 2 + 219 x + 180
4x+3, x-5, x+3
Write in the simplest form: LaTeX: \left(x^{\frac{2}{3}}y^{-\frac{1}{6}}\right)^{^{^{-12}}}
5 LaTeX: \frac{y^2}{x^8} y 2 x 8 y 2 x 8
The area of a circular trampoline is 112.07 square feet. Enter the radius of the trampoline. Round to the nearest hundredth.
5.97
Classify: -3x^5-2x^3 − 3 x 5 − 2 x 3 by degree and by number of terms.
5th degree binomial
Enter the value of LaTeX: m m to make LaTeX: b^m b m equivalent to b^10/b^4
6
Divide: (x^4+15x^3-77x^2+13x-36\right)\div\left(x-4\right) ( x 4 + 15 x 3 − 77 x 2 + 13 x − 36 ) ÷ ( x − 4 )
: x^3+19x^2-x+9
Enter the values for the 4th term of LaTeX: \left(2x-3y\right)^8 ( 2 x − 3 y ) 8 LaTeX: Ax^By^C
A= -48384 B= 5 C= 3
Enter the values for the 5th term of LaTeX: \left(x-2y\right)^6 ( x − 2 y ) 6 LaTeX: Ax^By^C
A= 240 B= 2 C= 4
Select the expression that is equivalent to LaTeX: x^4-8x^2+16
LaTeX: (x-2)(x+2)(x-2)(x+2)
Rationalize the denominator and simplify: LaTeX: \frac{\sqrt{3}-\sqrt{6}}{\sqrt{3}+\sqrt{6}}
LaTeX: -3+2\sqrt{2}
Simplify: LaTeX: \left(\sqrt[3]{27x^3y}\right)\left(\sqrt[3]{x^3y}\right)
LaTeX: 3x^2\sqrt[3]{y^2}
A polynomial equation with rational coefficients has the roots: LaTeX: 5+\sqrt{1},\:4-\sqrt{7} 5 + 1 , 4 − 7 Select two additional roots.
LaTeX: 5-\sqrt{1}, LaTeX: 4+\sqrt{7}
Multiply: LaTeX: \left(7-\sqrt{2}\right)\left(8+\sqrt{2}\right)
LaTeX: 54-\sqrt{2}
Add if possible: LaTeX: 2\sqrt[4]{2x}+6\sqrt[4]{2x}
LaTeX: 8\sqrt[4]{2x}
Simplify: LaTeX: \sqrt{\left(576x^4y^3\right)\left(32xy^2z\right)} i
LaTeX: 96x^2y^2\sqrt{2xyz}
Rationalize the denominator: LaTeX: \frac{5-\sqrt{21}}{\sqrt{3}-\sqrt{7}}
LaTeX: \frac{\sqrt{3}-\sqrt{7}}{2} 3 − 7 2 3 − 7 2
Let LaTeX: f\left(x\right)=5x-15 f ( x ) = 5 x − 15 and LaTeX: g\left(x\right)=x-3 g ( x ) = x − 3 , find LaTeX: \frac{f\left(x\right)}{g\left(x\right)} f ( x ) g ( x ) and its domain.
LaTeX: \frac{f\left(x\right)}{g\left(x\right)}=5 f ( x ) g ( x ) = 5 f ( x ) g ( x ) = 5 , x can be all real numbers except 3
Select the expression that is equivalent to LaTeX: c^3-512 c 3 − 512 .
LaTeX: \left(c-8\right)\left(c^2+8c+64\right)
Write as a radical: LaTeX: \left(m^4n^3\right)^{^{^{\frac{1}{3}}}}
LaTeX: \sqrt[3]{m^4n^3}
Divide: LaTeX: \frac{\sqrt{55}}{\sqrt{11}}
LaTeX: \sqrt{5}
Expand: LaTeX: \left(c-2d\right)^5
LaTeX: c^5-10c^4d+40c^3d^2-80c^2d^3+80cd^4-32d^5
Use the Binomial Theorem to expand LaTeX: \left(d-3b\right)^3
LaTeX: d^3-9d^2b+27db^2-27b^3
Use Pascal's Triangle to expand the binomial. LaTeX: \left(d-3\right)^7
LaTeX: d^7-21d^6+189d^5-945d^4+2835d^3-5103d^2+5103d-2187 d 7 − 21 d 6 + 189 d 5 − 945 d 4 + 2835 d 3 − 5103 d 2 + 5103 d − 2187 d 7 − 21 d 6 + 189 d 5 − 945 d 4 + 2835 d 3 − 5103 d 2 + 5103 d − 2187
Simplify: LaTeX: \sqrt{7x}\left(\sqrt{x}-7\sqrt{7}\right)
LaTeX: x\sqrt{7}-49\sqrt{x}
Find the inverse of LaTeX: y=4x^2-2
LaTeX: y=\pm\frac{\sqrt{x+2}}{2}
Find the inverse of LaTeX: y=7x^2-3
LaTeX: y=\pm\sqrt{\frac{x+3}{7}}
Select all the real square roots of LaTeX: -\frac{25}{64} − 25 64 .
No real roots
Solve: LaTeX: x^2+7x+19=0
No real solutions
Simplify: LaTeX: \left(8a^{-6}\right)^{^{^{-\frac{2}{3}}}}
a^4/4
Simplify: LaTeX: \left(8a^{-9}\right)^{^{-\frac{2}{3}}}
a^6/4
Select all roots of the polynomial equation: LaTeX: 2x^3-x^2+2x-1=0
i, 1/2, -i
Simplify and rationalize the denominator: LaTeX: \sqrt{\frac{10x^8}{2x^9}}
x LaTeX: \frac{\sqrt{5x}}{x} 5 x x 5 x x
Factor the expression and solve the equation: LaTeX: x^3-5x^2+4x=0
x(x-4)(x-1);x=0, 1, 4
Determine which polynomial is a factor of: LaTeX: 3x^4-5x^3+2x^2+3x-7
x+1
Write the expression (x + 6)(x - 4) as a polynomial in standard form.
x^2+2x-24
Select the polynomial equation of the least possible degree, integer coefficients that has 2, i, -i as roots.
x^3-2x^2+x-2=0
Find a third degree polynomial equation with rational coefficients that has the roots: -5 and 6 + i
x^3-7x^2-23x+185=0
Write as a radical: LaTeX: \left(x^{\frac{2}{3}}y^{-\frac{1}{6}}\right)^{^{-12}}
y^2/x^8