Simplifying Negative Radicals, Imaginary Numbers and Complex Numbers
√-48
4i√3
√-50
5i√2
√-75
5i√3
(2i) + (4i)
6i
√-72
6i√2
√-108
6i√3
Simplify: √(-49)
7i
√-128
8i√2
(6 + 2i) + (-6 +7i)
9i
(2 + 4i)(-4 - 3i)
4 - 22i
(3+2i)-(3-2i)
4i
√(-16)
4i
2√-12
4i√3
-1
*i*²=
*i* raised to the 30th power
-1
*i* raised to the 90th power
-1
(-7 - 4i) + 5 - (8i)
-2 - 12i
(3i) - (5i)
-2i
(8i)(6i) - (2i)(-6 + 7i)
-34 + 12i
(6 + i)(-7 - 3i)
-39 - 25i
(-3 - 6i) - (2 - i)
-5 - 5i
The sum of -6+7i and 2i
-6+9i
(-3i) - (3i)
-6i
(-8i)(-i)
-8
(2i)³
-8i
-3√-45
-9i√5
*i* raised to the third power
-i
*i* raised to the fourth power
1
*i* raised to the sixteenth power
1
-5(4 - 2i) - 3(-7 - 7i)
1 + 31i
(1 - 6i) + 2i
1- 4i
√-200
10i√2
2(7i)
14i
(-3i)(6i)
18i
(-2i)(-2i) - 3(-2 - 2i)
2 + 6i
(2i)(-3i)(4i)
24i
(-7 + i)(-3 - 6i)
27 + 39i
√-8
2i√2
√-24
2i√6
-4(-4 + 6i) - 5(-3 + 6i)
31 - 54i
use *i* to simplify √-9
3i
√-18
3i√2
√-27
3i√3
The *number* created to deal with the √ of a negative number.
The number *i*
Root(s) of an equation
Where the graph would touch the x-axis
*i* raised to the 9th power
i
√-1
i
-4 & +4
what are the square roots of 16?