Simplifying Negative Radicals, Imaginary Numbers and Complex Numbers

अब Quizwiz के साथ अपने होमवर्क और परीक्षाओं को एस करें!

√-48

4i√3

√-50

5i√2

√-75

5i√3

(2i) + (4i)

6i

√-72

6i√2

√-108

6i√3

Simplify: √(-49)

7i

√-128

8i√2

(6 + 2i) + (-6 +7i)

9i

(2 + 4i)(-4 - 3i)

4 - 22i

(3+2i)-(3-2i)

4i

√(-16)

4i

2√-12

4i√3

-1

*i*²=

*i* raised to the 30th power

-1

*i* raised to the 90th power

-1

(-7 - 4i) + 5 - (8i)

-2 - 12i

(3i) - (5i)

-2i

(8i)(6i) - (2i)(-6 + 7i)

-34 + 12i

(6 + i)(-7 - 3i)

-39 - 25i

(-3 - 6i) - (2 - i)

-5 - 5i

The sum of -6+7i and 2i

-6+9i

(-3i) - (3i)

-6i

(-8i)(-i)

-8

(2i)³

-8i

-3√-45

-9i√5

*i* raised to the third power

-i

*i* raised to the fourth power

1

*i* raised to the sixteenth power

1

-5(4 - 2i) - 3(-7 - 7i)

1 + 31i

(1 - 6i) + 2i

1- 4i

√-200

10i√2

2(7i)

14i

(-3i)(6i)

18i

(-2i)(-2i) - 3(-2 - 2i)

2 + 6i

(2i)(-3i)(4i)

24i

(-7 + i)(-3 - 6i)

27 + 39i

√-8

2i√2

√-24

2i√6

-4(-4 + 6i) - 5(-3 + 6i)

31 - 54i

use *i* to simplify √-9

3i

√-18

3i√2

√-27

3i√3

The *number* created to deal with the √ of a negative number.

The number *i*

Root(s) of an equation

Where the graph would touch the x-axis

*i* raised to the 9th power

i

√-1

i

-4 & +4

what are the square roots of 16?


संबंधित स्टडी सेट्स

QBO Certification Test Study Guide

View Set