Algebra 1 - Simplifying Exponents
15x²y⁷
(-15xy⁴)(-xy³)
-(3x)/y³
(-21x⁵y²)/(7x⁴y⁵)
-27x³
(-3x)³
-8x⁵y⁴
(-4x²y)²(-½xy²)
1
(-99)⁰
-x⁴y³z
(-xy)³(xz)
0.4x⁴y⁶
(0.2x²y³)²
0.064x⁹
(0.4x³)³
x⁴/3
(12x⁵)/(36x)
3x⁵y²
(15x⁶y⁻⁹)/(5xy⁻¹¹)
9/4
(2/3)⁻²
4x⁶y⁸
(2x³y⁴)²
16/9
(3/4)⁻²
4/3
(3/4)⁻¹
-4x²yz³
(32x³y²z⁵)/(-8xyz²)
9x²y⁴
(3xy²)²
25/16
(4/5)⁻²
-(8x⁵y²)/z
(48x⁶y⁷z⁵)/(-6xy⁵z⁶)
1
(4x³/2x⁵)⁰
-8x⁸y
(4x³y)(-2x⁵)
(16x¹⁴)/(49y⁴)
(4x⁷/7y²)²
6
(6⁵)/(6⁴)
3x
(9x⁷)/(3x⁶)
9⁴
(9¹²)/(9⁸)
y²/x²
(x/y)⁻²
y/x
(x/y)⁻¹
x⁷
(x²/x⁻⁵)
y⁶/x⁶
(x²/y²)⁻³
y²/x²
(x²/y²)⁻¹
x⁹
(x³/x⁻⁶)
y³/x³
(x³/y³)⁻¹
(1)/(y²)
(x³y²)/(x³y⁴)
x²y³
(x³y⁵)/(xy²)
x²
(x⁴)/(x²)
y²
(x⁴y³)/(x⁴y)
x³
(x⁷y²)/(x⁴y²)
1/x⁷
(x⁻³)/(x⁴)
1/x⁹
(x⁻⁴)/(x⁵)
(y⁴z²)/x⁵
(x⁻⁵y⁴)/(z⁻²)
¼x²y⁶
(½xy³)²
1
100⁰
1/(4⁴) or 1/256
4⁻⁴
1/(8²) or 1/64
8⁻²
x⁷
Find the area of a rectangle if the length is x² and the width is x⁵.
18x³y⁶
Find the area of a rectangle whose length is 6x²y⁴ and width is 3xy²
x²y²
Find the area of a square if the side length is xy.
18x⁴
Find the area of a triangle with base 9x³ and height 4x.
8x⁵y²
Simplify (-2x⁴y)(-4xy)
-15x⁶y
Simplify (-5x²y)(3x⁴)
-15x¹¹
Simplify (-5x³)(3x⁸)
36x²
Simplify (-6x)²
10⁶ or 1,000,000
Simplify (10²)³
8a⁴b⁴c⁴
Simplify (2ab²c²)(4a³b²c²)
6x⁷
Simplify (2x²)(3x⁵)
-6x³y⁴
Simplify (3xy⁴)(-2x²)
12x⁴y⁸
Simplify (4xy³)(3x³y⁵)
20x⁹
Simplify (5x⁷)(4x²)
7x⁷y⁵
Simplify (7x⁵y²)(x²y³)
a⁴b⁴
Simplify (ab²)(a³b²)
a⁴b⁸
Simplify (a²b⁴)(a²b⁴)
x³⁶
Simplify (x³)¹²
y³z³
Simplify (y²z)(yz²)
y⁵z³
Simplify (y²z²)(y³z)
x¹⁰
Simplify x(x²)(x⁷)
x⁸
[(x²)²]²
x²⁴
[(x²)³]⁴
1/(x²)
x/(x³)
x²y³
x²y³z⁰
(x²y³)/(z⁴)
x²y³z⁻⁴
x²
x²y⁰
(x²)/(y³)
x²y⁻³
(x²z⁴)/(y³)
x²y⁻³z⁴
(x³)/(y²)
x³y⁻²
1
x⁰
1/x²
x⁰(x⁴)(x⁻⁶)
1/x²
x⁻²
1/(x²y³)
x⁻²y⁻³
1/x³
x⁻³
1/x⁴
x⁻⁴
1
y⁰