Chapter 16 and 17

Réussis tes devoirs et examens dès maintenant avec Quizwiz!

Proton

A proton is a subatomic particle, symbol p or p+ , with a positive electric charge of +1e elementary charge and mass slightly less than that of a neutron. Protons and neutrons, each with masses of approximately one atomic mass unit, are collectively referred to as "nucleons". One or more protons are present in the nucleus of every atom; they are a necessary part of the nucleus. The number of protons in the nucleus is the defining property of an element, and is referred to as the atomic number (represented by the symbol Z). Since each element has a unique number of protons, each element has its own unique atomic number. The word proton is Greek for "first", and this name was given to the hydrogen nucleus by Ernest Rutherford in 1920. In previous years, Rutherford had discovered that the hydrogen nucleus (known to be the lightest nucleus) could be extracted from the nuclei of nitrogen by atomic collisions. Protons were therefore a candidate to be a fundamental particle, and hence a building block of nitrogen and all other heavier atomic nuclei.

Quark

A quark (/ˈkwɔːrk/ or /ˈkwɑːrk/) is an elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei.[1] Due to a phenomenon known as color confinement, quarks are never directly observed or found in isolation; they can be found only within hadrons, such as baryons (of which protons and neutrons are examples) and mesons.[2][3] For this reason, much of what is known about quarks has been drawn from observations of the hadrons themselves.

Atom

An atom is the smallest constituent unit of ordinary matter that has the properties of a chemical element.[1] Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are very small; typical sizes are around 100 picometers (a ten-billionth of a meter, in the short scale).

Period

Definition of Period. A period is the name given to a horizontal row of the periodic table. The periodic table has seven periods. Period 1 contains only two elements: hydrogen and helium

Mass

In physics, mass is a property of a physical body. It is the measure of an object's resistance to acceleration (a change in its state of motion) when a net force is applied.[1] It also determines the strength of its mutual gravitational attraction to other bodies. The basic SI unit of mass is the kilogram (kg).

Isotope

Isotopes are variants of a particular chemical element which differ in neutron number. All isotopes of a given element have the same number of protons in each atom. The term isotope is formed from the Greek roots isos (ἴσος "equal") and topos (τόπος "place"), meaning "the same place"; thus, the meaning behind the name is that different isotopes of a single element occupy the same position on the periodic table.

Average Atomic Mass

Relative atomic mass (symbol: Ar) is a dimensionless (number only) physical quantity. In its modern definition, it is the ratio of the average mass of atoms of an element in a given sample to one unified atomic mass unit. The unified atomic mass unit, symbol u, is defined being 1⁄12 of the mass of a carbon-12 atom.[2][3] The mass of atoms can vary (between atoms of the same element), due to the presence of various isotopes of that element. Since both values in the ratio are expressed in the same unit (u), the resulting value is dimensionless; hence the value is relative.

Atomic Number

The atomic number or proton number (symbol Z) of a chemical element is the number of protons found in the nucleus of an atom of that element. It is identical to the charge number of the nucleus. The atomic number uniquely identifies a chemical element. In an uncharged atom, the atomic number is also equal to the number of electrons.

Electron

The electron is a subatomic particle, symbol e− or β− , with a negative elementary electric charge.[8] Electrons belong to the first generation of the lepton particle family,[9] and are generally thought to be elementary particles because they have no known components or substructure.[1] The electron has a mass that is approximately 1/1836 that of the proton.[10] Quantum mechanical properties of the electron include an intrinsic angular momentum (spin) of a half-integer value, expressed in units of the reduced Planck constant, ħ. As it is a fermion, no two electrons can occupy the same quantum state, in accordance with the Pauli exclusion principle.[9] Like all elementary particles, electrons exhibit properties of both particles and waves: they can collide with other particles and can be diffracted like light. The wave properties of electrons are easier to observe with experiments than those of other particles like neutrons and protons because electrons have a lower mass and hence a longer De Broglie wavelength for a given energy.

Mass Number

The mass number (symbol A), also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It determines the atomic mass of atoms. Because protons and neutrons both are baryons, the mass number A is identical with the baryon number B as of the nucleus as of the whole atom or ion. The mass number is different for each different isotope of a chemical element. This is not the same as the atomic number (Z) which denotes the number of protons in a nucleus, and thus uniquely identifies an element. Hence, the difference between the mass number and the atomic number gives the number of neutrons (N) in a given nucleus: N=A−Z.[1]

Neutron

The neutron is a subatomic particle, symbol n or n0 , with no net electric charge and a mass slightly larger than that of a proton. Protons and neutrons, each with mass approximately one atomic mass unit, constitute the nucleus of an atom, and they are collectively referred to as nucleons.[5] Their properties and interactions are described by nuclear physics.

Compound

combination of two or more elements

Element

each of more than one hundred substances that cannot be chemically interconverted or broken down into simpler substances and are primary constituents of matter. Each element is distinguished by its atomic number, i.e., the number of protons in the nuclei of its atoms.


Ensembles d'études connexes

2023 State Insurance Statutes, Rules, and Regulations

View Set

American Government: Reading Quiz 2

View Set