Chapter 16 Quiz

Réussis tes devoirs et examens dès maintenant avec Quizwiz!

Cytosine makes up 42% of the nucleotides in a sample of DNA from an organism. Approximately what percentage of the nucleotides in this sample will be thymine? A) 8% B) 16% C) 31% D) 42% E) It cannot be determined from the information provided.

A) 8%

Why do histones bind tightly to DNA? A) Histones are positively charged, and DNA is negatively charged. B) Histones are negatively charged, and DNA is positively charged. C) Both histones and DNA are strongly hydrophobic. D) Histones are covalently linked to the DNA. E) Histones are highly hydrophobic, and DNA is hydrophilic.

A) Histones are positively charged, and DNA is negatively charged.

Use the following list of choices for the following question I. helicase II. DNA polymerase III III. ligase IV. DNA polymerase I V. primase - Which of the enzymes separates the DNA strands during replication? A) I B) II C) III D) IV E) V

A) I

In analyzing the number of different bases in a DNA sample, which result would be consistent with the base-pairing rules? A) A = G B) A + G = C + T C) A + T = G + T D) A = C E) G = T

B) A + G = C + T

In trying to determine whether DNA or protein is the genetic material, Hershey and Chase made use of which of the following facts? A) DNA contains sulfur, whereas protein does not. B) DNA contains phosphorus, whereas protein does not. C) DNA contains nitrogen, whereas protein does not. D) DNA contains purines, whereas protein includes pyrimidines. E) RNA includes ribose, whereas DNA includes deoxyribose sugars.

B) DNA contains phosphorus, whereas protein does not.

A biochemist isolates, purifies, and combines in a test tube a variety of molecules needed for DNA replication. When she adds some DNA to the mixture, replication occurs, but each DNA molecule consists of a normal strand paired with numerous segments of DNA a few hundred nucleotides long. What has she probably left out of the mixture? A) DNA polymerase B) DNA ligase C) nucleotides D) Okazaki fragments E) primase

B) DNA ligase

In his transformation experiments, what did Griffith observe? A) Mutant mice were resistant to bacterial infections. B) Mixing a heat-killed pathogenic strain of bacteria with a living nonpathogenic strain can convert some of the living cells into the pathogenic form. C) Mixing a heat-killed nonpathogenic strain of bacteria with a living pathogenic strain makes the pathogenic strain nonpathogenic. D) Infecting mice with nonpathogenic strains of bacteria makes them resistant to pathogenic strains. E) Mice infected with a pathogenic strain of bacteria can spread the infection to other mice.

B) Mixing a heat-killed pathogenic strain of bacteria with a living nonpathogenic strain can convert some of the living cells into the pathogenic form.

Replication in prokaryotes differs from replication in eukaryotes for which of the following reasons? A) Prokaryotic chromosomes have histones, whereas eukaryotic chromosomes do not. B) Prokaryotic chromosomes have a single origin of replication, whereas eukaryotic chromosomes have many. C) The rate of elongation during DNA replication is slower in prokaryotes than in eukaryotes. D) Prokaryotes produce Okazaki fragments during DNA replication, but eukaryotes do not. E) Prokaryotes have telomeres, and eukaryotes do not.

B) Prokaryotic chromosomes have a single origin of replication, whereas eukaryotic chromosomes have many.

If a cell were unable to produce histone proteins, which of the following would be a likely effect? A) There would be an increase in the amount of "satellite" DNA produced during centrifugation. B) The cell's DNA couldn't be packed into its nucleus. C) Spindle fibers would not form during prophase. D) Amplification of other genes would compensate for the lack of histones. E) Pseudogenes would be transcribed to compensate for the decreased protein in the cell.

B) The cell's DNA couldn't be packed into its nucleus.

An Okazaki fragment has which of the following arrangements? A) primase, polymerase, ligase B) 3' RNA nucleotides, DNA nucleotides 5' C) 5' RNA nucleotides, DNA nucleotides 3' D) DNA polymerase I, DNA polymerase III E) 5' DNA to 3'

C) 5' RNA nucleotides, DNA nucleotides 3'

What is the role of DNA ligase in the elongation of the lagging strand during DNA replication? A) It synthesizes RNA nucleotides to make a primer. B) It catalyzes the lengthening of telomeres. C) It joins Okazaki fragments together. D) It unwinds the parental double helix. E) It stabilizes the unwound parental DNA.

C) It joins Okazaki fragments together.

Eukaryotic telomeres replicate differently than the rest of the chromosome. This is a consequence of which of the following? A) the evolution of telomerase enzyme B) DNA polymerase that cannot replicate the leading strand template to its 5' end C) gaps left at the 5' end of the lagging strand D) gaps left at the 3' end of the lagging strand because of the need for a primer E) the "no ends" of a circular chromosome

C) gaps left at the 5' end of the lagging strand

In a nucleosome, the DNA is wrapped around A) polymerase molecules. B) ribosomes. C) histones. D) a thymine dimer. E) satellite DNA.

C) histones.

In his work with pneumonia-causing bacteria and mice, Griffith found that A) the protein coat from pathogenic cells was able to transform nonpathogenic cells. B) heat-killed pathogenic cells caused pneumonia. C) some substance from pathogenic cells was transferred to nonpathogenic cells, making them pathogenic. D) the polysaccharide coat of bacteria caused pneumonia. E) bacteriophages injected DNA into bacteria.

C) some substance from pathogenic cells was transferred to nonpathogenic cells, making them pathogenic.

What is the function of DNA polymerase III? A) to unwind the DNA helix during replication B) to seal together the broken ends of DNA strands C) to add nucleotides to the 3' end of a growing DNA strand D) to degrade damaged DNA molecules E) to rejoin the two DNA strands (one new and one old) after replication

C) to add nucleotides to the 3' end of a growing DNA strand

At a specific area of a chromosome, the sequence of nucleotides below is present where the chain opens to form a replication fork: 3' C C T A G G C T G C A A T C C 5' An RNA primer is formed starting at the underlined T (T) of the template. Which of the following represents the primer sequence? A) 5' G C C T A G G 3' B) 3' G C C T A G G 5' C) 5' A C G T T A G G 3' D) 5' A C G U U A G G 3' E) 5' G C C U A G G 3'

D) 5' A C G U U A G G 3'

Which of the following statements describes the eukaryotic chromosome? A) It is composed of DNA alone. B) The nucleosome is its most basic functional subunit. C) The number of genes on each chromosome is different in different cell types of an organism. D) It consists of a single linear molecule of double-stranded DNA plus proteins. E) Active transcription occurs on heterochromatin but not euchromatin.

D) It consists of a single linear molecule of double-stranded DNA plus proteins.

Individuals with the disorder xeroderma pigmentosum are hypersensitive to sunlight. This occurs because their cells are impaired in what way? A) They cannot replicate DNA. B) They cannot undergo mitosis. C) They cannot exchange DNA with other cells. D) They cannot repair thymine dimers. E) They do not recombine homologous chromosomes during meiosis.

D) They cannot repair thymine dimers.

For a science fair project, two students decided to repeat the Hershey and Chase experiment, with modifications. They decided to label the nitrogen of the DNA, rather than the phosphate. They reasoned that each nucleotide has only one phosphate and two to five nitrogens. Thus, labeling the nitrogens would provide a stronger signal than labeling the phosphates. Why won't this experiment work? A) There is no radioactive isotope of nitrogen. B) Radioactive nitrogen has a half-life of 100,000 years, and the material would be too dangerous for too long. C) Avery et al. have already concluded that this experiment showed inconclusive results. D) Although there are more nitrogens in a nucleotide, labeled phosphates actually have 16 extra neutrons; therefore, they are more radioactive. E) Amino acids (and thus proteins) also have nitrogen atoms; thus, the radioactivity would not distinguish between DNA and proteins.

E) Amino acids (and thus proteins) also have nitrogen atoms; thus, the radioactivity would not distinguish between DNA and proteins.

A new DNA strand elongates only in the 5' to 3' direction because A) DNA polymerase begins adding nucleotides at the 5' end of the template. B) Okazaki fragments prevent elongation in the 3' to 5' direction. C) the polarity of the DNA molecule prevents addition of nucleotides at the 3' end. D) replication must progress toward the replication fork. E) DNA polymerase can only add nucleotides to the free 3' end.

E) DNA polymerase can only add nucleotides to the free 3' end.


Ensembles d'études connexes

Delegation in Nursing (Pearson Review)

View Set

History Midterm 1- Jack Kaczorowski

View Set

Mathematics In The Modern World Midterms-Finals

View Set