Difference Idendities
Write the given expression as a single trigonometric function. sin(42°)cos(17°) - cos(42°)sin(17°)
sin(25°)
Complete the steps to derive the cofunction identity. sin(pi/2-x)=____ (pi/2)cos(x)-___ (pi/2)sin(x) =( ___ )cos(x)-( ___ )sin9x) =( _____ )(x)
sin cos 1 0 cos
Given: cos(x-y) 1. =sin[pi/2-(x-y)] 2.=sin[pi/2-x+y] 3.=sin[(pi/2-x)+y 4.=sin[(pi/2-x)-(-y)] 5.=sin(pi/2-x)cos(-y)-cos(pi/2-x)sin(-y) 6.=cos(x0cos(-y)-sin(x)sin(-y) 7.=cos(x)cos(y)+sin(x)sin(y) Choose a justification for each step in the derivation of the sine difference identity.
step1: conduction identity step5: sine difference identity step6: conduction identity step7: cosine function is even, sine function is odd.
solve tan(x-pi)-cos(x-3pi/2)=0, xϵ[0,2pi).
x={0,pi}
Find the exact value of sin(140°)cos(20°) - cos(140°)sin(20°).
√3/2
What is the exact value of tan(105°)
-2-√3
Find the exact value of cos(5pi/6)cos(pi/12)+sin(5pi/6)sin(pi/12)
-√2/2
Use the drop-down menus to complete the solution to the equation for all possible values of x on the interval [0, 2].
0 1 sin 3 3
Find the exact value of = and cos = for α in Quadrant III and ß in Quadrant II
15-4√39/40
Write the given expression as a single trigonometric function.Tan(3pi/7)-tan2pi/5 over 1+tan3pi/7)tan(2pi/5)
tan(pi/35)