Quiz 2- Science of psych
Define the concept of a variable, distinguish quantitative from categorical variables, and give examples of variables that might be of interest to psychologists.
A variable is a quantity or quality that varies across people or situations. For example, the height of the students in a psychology class is a variable because it varies from student to student. The sex of the students is also a variable as long as there are both male and female students in the class. A quantitative variable is a quantity, such as height, that is typically measured by assigning a number to each individual. Other examples of quantitative variables include people's level of talkativeness, how depressed they are, and the number of siblings they have. A categorical variable is a quality, such as sex, and is typically measured by assigning a category label to each individual. Other examples include people's nationality, their occupation, and whether they are receiving psychotherapy.
Explain what makes a research question interesting and evaluate research questions in terms of their interestingness.
Interestingness: Its answer is in doubt and when answering it, will it fill a gap in the research literature Feasibility: Factors that affect 28 • RESEARCH METHODS IN PSYCHOLOGY feasibility include time, money, technical knowledge and skill, and access to special equipment and research participants.
Interpret basic statistics and graphs used to describe statistical relationships.
One basic form of statistical relationship is a difference between the mean scores of two groups on some variable of interest. A wide variety of research questions in psychology take this form. Are women more talkative than men? Do children using human figure drawings recall more touch information than children not using human figure drawings? Do people talking on a cell phone have poorer driving abilities than people not talking on a cell phone? Do people receiving Psychotherapy A tend to have fewer depressive symptoms than people receiving Psychotherapy B? Later we will also see that such relationships can involve more than two groups and that the groups can consist of the very same individuals tested at different times or under different conditions. For now, however, it is easiest to think in terms of two distinct groups. Differences between groups are usually described by giving the mean score and standard deviation for each group. This information can also be presented in a bar graph like that in Figure 2.2 "Bar Graph Showing the Very Small Difference in the Mean Number of Words Spoken per Day by Women and Men in a Large Sample", where the heights of the bars represent the group means. A second basic form of statistical relationship is a correlation between two quantitative variables, where the average score on one variable differs systematically across the levels of the other. Again, a wide variety of research questions in psychology take this form. Is being a happier person associated with being more talkative? Do children's memories for touch information improve as they get older? Does the effectiveness of psychotherapy depend on how much the patient likes the therapist? Correlations between quantitative variables are often presented using scatterplots. The strength of a correlation between quantitative variables is typically measured using a statistic called Pearson's r. As Figure 2.4 "Range of Pearson's " shows, Pearson's r ranges from −1.00 (the strongest possible negative relationship) to +1.00 (the strongest possible positive relationship). A value of 0 means there is no relationship between the two variables. When Pearson's r is 0, the points on a scatterplot form a shapeless "cloud." As its value moves toward −1.00 or +1.00, the points come closer and closer to falling on a single straight line. Figure 2.4 Range of Pearson's r, From −1.00 (Strongest Possible Negative Relationship), Through 0 (No Relationship), to +1.00 (Strongest Possible Positive Relationship) Pearson's r is a good measure only for linear relationships, in which the points are best approximated by a straight line. It is not a good measure for nonlinear relationships, in which the points are better approximated by a curved line. Figure 2.5 "Hypothetical Nonlinear Relationship Between Sleep and Depression", for example, shows a hypothetical relationship between the amount of sleep people get per night and their level of depression. In this example, the line that best approximates the points is a curve—a kind of upside-down "U"—because people who get about eight hours of sleep tend to be the least depressed. Those who get too little sleep and those who get too much sleep tend to be more depressed. Nonlinear relationships are fairly common in psychology, but measuring their strength is beyond the scope of this book.
Define the research literature in psychology and give examples of sources that are part of the research literature and sources that are not
The research literature in any field is all the published research in that field. The research literature in psychology is enormous—including millions of scholarly articles and books dating to the beginning of the field—and it continues to grow. Although its boundaries are somewhat fuzzy, the research literature definitely does not include self-help and other pop psychology books, dictionary and encyclopedia entries, websites, and similar sources that are intended mainly for the general public. These are considered unreliable because they are not reviewed by other researchers and are often based on little more than common sense or personal experience. Wikipedia contains much valuable information, but the fact that its authors are anonymous and its content continually changes makes it unsuitable as a basis of sound scientific research. For our purposes, it helps to define the research literature as consisting almost entirely of two types of sources: articles in professional journals, and scholarly books in psychology and related fields.
Describe two basic forms of statistical relationship and give examples of each.
There are two basic forms of statistical relationship: differences between groups and correlations between quantitative variables. Although both are consistent with the general definition of a statistical relationship—the average score on one variable differs across levels of the other—they are usually described and analyzed somewhat differently. For this reason it is important to distinguish them clearly
Explain why correlation does not imply causation.
There are two reasons that correlation does not imply causation. The first is called the directionality problem. Two variables, X and Y, can be statistically related because X causes Y or because Y causes X. Consider, for example, a study showing that whether or not people exercise is statistically related to how happy they are—such that people who exercise are happier on average than people who do not. This statistical relationship is consistent with the idea that exercising causes happiness, but it is also consistent with the idea that happiness causes exercise. Perhaps being happy gives people more energy or leads them to seek opportunities to socialize with others by going to the gym. The second reason that correlation does not imply causation is called the third-variable problem. Two variables, X and Y, can be statistically related not because X causes Y, or because Y causes X, but because some third variable, Z, causes both X and Y. For example, the fact that people with more electrical appliances are more likely to use birth control probably reflects the fact that having more education or income causes people to own more appliances and causes them to use birth control. Similarly, the statistical relationship between exercise and happiness could mean that some third variable, such as physical health, causes both of the others. Being physically healthy could cause people to exercise and cause them to be happier
Describe and use several methods for finding previous research on a particular research idea or question.
Using psycINFO, good article or book- recent review article for this Focus on recent research, look for review articles on your topic
Explain the difference between a population and a sample.
o Researchers in psychology are usually interested in drawing conclusions about some very large group of people. This is called the population. It could be American teenagers, children with autism, professional athletes, or even just human beings—depending on the interests and goals of the researcher. But they usually study only a small subset or sample of the population. For example, a researcher might measure the talkativeness of a few hundred college students with the intention of drawing conclusions about the talkativeness of men and women in general. It is important, therefore, for researchers to use a representative sample—one that is similar to the population in important respects.
Describe some techniques for turning research ideas into empirical research questions and use techniques to generate questions.
questions expressed in terms of a single variable or relationship between variables. One way to do this is to look closely at the discussion section in a recent research article on the topic. This is the last major section of the article, in which the researchers summarize their results, interpret them in the context of past research, and suggest directions for future research. These suggestions often take the form of specific research questions, which you can then try to answer with additional research. This can be a good strategy because it is likely that the suggested questions have already been identified as interesting and important by experienced researchers. But you may also want to generate your own research questions If scientific research has already answered the question of how frequent or intense the behavior or characteristic is, then you should consider turning it into a question about a statistical relationship between that behavior or characteristic and some other variable.
Describe some common sources of research ideas and generate research ideas using those sources.
—usually focusing on some behavior or psychological characteristic: talkativeness, memory for touches, depression, bungee jumping, and so on. Before looking at how to turn such ideas into empirically testable research questions, it is worth looking at where such ideas come from in the first place. Three of the most common sources of inspiration are informal observations, practical problems, and previous research. Informal observations include direct observations of our own and others' behavior as well as secondhand observations from nonscientific sources such as newspapers, books, and so on. For example, you might notice that you always seem to be in the slowest moving line at the grocery store. Could it be that most people think the same thing? Or you might read in the local newspaper about people donating money and food to a local family whose house has burned down and begin to wonder about who makes such donations and why. Some of the most famous research in psychology has been inspired by informal observations. Stanley Milgram's famous research on obedience, for example, was inspired in part by journalistic reports of the trials of accused Nazi war criminals—many of whom claimed that they were only obeying orders. This led him to wonder about the extent to which ordinary people will commit immoral acts simply because they are ordered to do so by an authority figure (Milgram, 1963). Practical problems can also inspire research ideas, leading directly to applied research in such domains as law, health, education, and sports. Can human figure drawings help children remember details about being physically or sexually abused? How effective is psychotherapy for depression compared to drug therapy? To what extent do cell phones impair people's driving ability? How can we teach children to read more efficiently? What is the best mental preparation for running a marathon? Probably the most common inspiration for new research ideas, however, is previous research