Trig Graph Review
y-intercept of the tangent function
(0,0)
Amplitude or vertical stretch factor
Half the difference between the maximum and minimum y-values of the graph of a sine or cosine function is called the ??? of the graph or wave.
Where are the x-intercepts (zeros) of y = cos 4pi
x-intercepts (zeros) are at pi/8 and 3pi/8
domain of cosine function
(-∞,∞)
Relationship between sin and arcsin
Inverse Functions
Relationship between sin and csc
Reciprocal Functions
x=π/2 and x = -π/2
The asymptotes of f(x) = tan x
Period
The horizontal length of one cycle.
π
The period for tangent is ?? and not the same as it was for the sine and cosine functions.
2π/|b|
To determine the Period of Cosine and Sine functions
range of sine function
[-1,1]
Identify the transformations in the graph: y = 2 sin x/2
amplitude = 2 period = 4pi
Identify the transformations in the graph: y = 2 sin (x/3 - 3pi/4) - 2
amplitude = 2 period = 6pi phase shift to the right 9pi/4 radians vertical shift down 2 unit
Identify the transformations in the graph: y = 2 sin (4x + pi/6) - 2
amplitude = 2 period = pi/2 phase shift to the left pi/24 radians vertical shift down 2 units
Identify the transformations in the graph: y = 2 tan (2x - pi/3) + 2
amplitude = 2 period = pi/2 phase shift to the right pi/6 vertical shift up 2
What is the domain and range of y = 2 cos (pi/2 + 5pi/4) + 1
domain: all real numbers range: [-1, 3]
What is the domain and range of y = -1 + 4 cos (3x - pi/6)
domain: all real numbers range: [-5, 3]
vertical shift
is a translation of a geometric object in a direction parallel to the vertical axis (y-axis)
Identify the transformations in the graph: y = cos (3x + pi/3)
period = 2pi/3 phase shift to the left pi/9 radians
Identify the transformations in the graph: y = 2 sin (3x + pi/3) - 2
vertical shift down 2 units amplitude = 2 period = 2pi / 3 phase shift to the left pi/9
Where are the x-intercepts (zeros) of y = 4 sin (x/2)
x-intercepts (zeros) are at 0, 2pi, 4pi
domain of the tangent function
All angles x except odd integrals of π/2
Identify the transformations in the graph: y = 3 cos (x/4 - 5pi/6) - 2
amplitude = 3 period = 8pi phase shift to the right 10pi/3 radians vertical shift down 2 unit
Identify the transformations in the graph: y = 3 tan (2x + pi/4) - 2
amplitude = 3 period = pi/2 phase shift to the left pi/8 radians vertical shift down 2 unit
Identify the transformations in the graph: y = 3 sin (4x - pi/4) - 1
amplitude = 3 period = pi/2 phase shift to the right pi/16 radians vertical shift down 1 unit
Identify the transformations in the graph: y = 3 sin 4x - 1
amplitude = 3 period = pi/2 vertical shift down 1 unit
Identify the transformations in the graph: y = 4 tan (x/2 + pi/2) + 2
amplitude = 4 period = 4pi phase shift to the left pi radians vertical shift up 2 units
Identify the transformations in the graph: y = 4 cos (x/4 + 3pi/4) - 2
amplitude = 4 period = 8pi phase shift to the left 3pi radians vertical shift down 2 unit
y= a sin b(x - c) + d
graphing form of sine.