Trigonometric Identities + Unit Circle

Réussis tes devoirs et examens dès maintenant avec Quizwiz!

cos(π)

-1

sin(3π/2)

-1

cot(-θ)

-cotθ

csc(-θ)

-cscθ

sin(-θ)

-sin(θ)

tan(-θ)

-tanθ

sin(0) or sin(π) OR cos(π/2) or cos(3π/2)

0

cos(0)

1

sin(π/2)

1

tan(π/4) or tan(45°)

1

cot²θ + 1 = csc²θ ⇒

1 = csc²θ - cot²θ OR cot²θ = csc²θ - 1

tan²θ + 1 = sec²θ ⇒

1 = sec²θ - tan²θ OR tan²θ = sec²θ - 1

cos(π/3) or cos(60°)

1/2

sin(π/6) or sin(30°)

1/2

secθ

1/cosθ

cscθ

1/sinθ

cotθ

1/tanθ OR cosθ/sinθ

domain and range of tan

D: (-π/2, π/2), R: (-∞,∞)

domain and range of tan^-1

D: (-∞,∞), R: (-π/2, π/2)

domain and range of sin^-1

D: [-1,1], R: [-π/2, π/2]

domain and range of cos^-1

D: [-1,1], R: [0,π]

domain and range of sin

D: [-π/2, π/2], R: [-1,1]

domain and range of cos

D: [0,π] , R: [-1,1]

cos2θ = cos²θ - sin²θ ⇒

cos2θ = 1 - 2sin²θ OR cos2θ = 2cos²θ -1

cos(-θ)

cosθ

sin(π/2 - θ)

cosθ

tan(π/2 - θ)

cotθ

sec(π/2 - θ)

cscθ

csc(π/2 - θ)

secθ

sec(-θ)

secθ

sin2θ

sin2θ = 2sinθcosθ

sin²θ + cos²θ = 1 ⇒

sin²θ - 1 = cos²θ OR cos²θ - 1 = sin²θ

cos(π/2 - θ)

sinθ

tanθ

sinθ/cosθ

tan2θ

tan2θ = 2tanθ/(1-tan²θ)

cot(π/2 - θ)

tanθ

cos(π/4) or cos(45°)

√2/2

sin(π/4) or sin(45°)

√2/2

tan(π/3) or tan(60°)

√3

cos(π/6) or cos(30°)

√3/2

sin(π/3) or sin(60°)

√3/2

tan(π/6) or tan(30°)

√3/3


Ensembles d'études connexes

JavaScript - Level 1 - All Operator Types

View Set

AP PSYCH: Unit 4-Sensation and Perception

View Set

PHAR 253: Medications for Depression:

View Set

Chapter 1 Questions: Basic insurance concepts and principals

View Set