Math mid
Begin by graphing the standard quadratic function f(x) = x2 . Then use transformations of this graph to graph the given function. 20) h(x) = (x + 6)2 + 2
A)
Find the slope of the line that goes through the given points. 12) (8, 7), (-9, -3) A) 10 17 B) 17 10 C) - 10 17 D) - 4
A) 10/17
Evaluate the piecewise function at the given value of the independent variable. 11) f(x) = 2x - 5 if x < -3 -2x - 1 if x ≥ -3 ; f(-3) A) 5 B) 0 C) -7 D) 1
A) 5
3) {(-1, 9), (1, 2), (6, 7), (7, -6), (11, 6)} A) Function B) Not a function
A) Function
Determine whether the relation is a function. 2) {(-8, -9), (-8, -2), (2, -6), (6, 3), (7, -6)} A) Not a function B) Function
A) Not a function
Give the domain and range of the relation. 1) {(-7, -2), (-4, 7), (4, 5), (4, 8)} A) domain = {-7, -4, 4}; range = {-2, 7, 5, 8} B) domain = {-2, 7, 5, 8}; range = {-7, -4, 4} C) domain = {-7, -4, 4, 14}; range = {-2, 7, 5, 8} D) domain = {-7, -4, 4, -4}; range = {-2, 7, 5, 8}
A) domain = {-7, -4, 4}; range = {-2, 7, 5, 8}
Does the graph represent a function that has an inverse function?
A) no
Determine whether the equation defines y as a function of x. 4) 3x + 3y = 13 A) y is a function of x B) y is not a function of x
A) y is a function of x
A) function B) not a function
A)function
21) g(x) = - x + 1 - 2
B)
22) g(x) = 3x/ x2 - 49
B) (-∞, -7) ∪ (-7, 7) ∪ (7, ∞)
23) f(x) = 1/ x - 3
B) (-∞, 3) ∪ (3, ∞)
Evaluate the function at the given value of the independent variable and simplify. 6) f(x) = -5x + 1; f(-3) A) 14 B) 16 C) 12 D) -4
B) 16
Determine the slope and the y-intercept of the graph of the equation. 16) 7x + y + 2 = 0 A) m = - 7 2 ; 0, - 1 2 B) m = -7; (0, -2) C) m = - 1 7 ; 0, - 2 7 D) m = 7; (0, -2)
B) m= -7; (0,-2)
Use the vertical line test to determine whether or not the graph is a graph in which y is a function of x. 7) A) function B) not a function
B) not a function
5) x2 + y2 = 16 A) y is a function of x B) y is not a function of x
B) y is not a function of x
Use the given conditions to write an equation for the line in the indicated form. 18) Passing through (5, 2) and perpendicular to the line whose equation is y = 1 2 x + 4; slope-intercept form A) y = - 1 2 x - 6 B) y = - 2x + 12 C) y = - 2x - 12 D) y = 2x - 12
B) y=-2x+12
Does the graph represent a function that has an inverse function?
B) yes
28) f(x) = 6x + 11, g(x) = 3x - 1 (f∘g)(x)
B)18x+5
Identify the intervals where the function is changing as requested. 10) Increasing A) (-3, ∞) B) (-3, 3) C) (-2, 2) D) (-2, ∞)
C) (-2,2)
26) f(x) = 5 - 4x, g(x) = -9x + 4 Find f + g.
C) -13x+9
Given functions f and g, perform the indicated operations. 25) f(x) = 9x - 6, g(x) = 4x - 8 Find f - g.
C) 5x+2
Find the inverse of the one-to-one function. 30) f(x) = 6x - 7/5
C) f^-1(x) = 5x + 7 6
Graph the linear function by plotting the x- and y-intercepts. 17) 4x - 8y - 8 = 0
C) intercepts: (0,-1), (2,0)
19) Passing through (2, 2) and parallel to the line whose equation is y = - 1 5 x + 5; slope-intercept form A) y = - 5x - 12 B) y = 1 5 x - 12 5 C) y = - 1 5 x + 12 5 D) y = - 1 5 x - 12/5
C) y=-1/5x-12/5
15) y = 1
D)
Graph the line whose equation is given. 14) y = -3x - 2
D)
Use the graph to determine the functionʹs domain and range. 9) A) domain: [0, ∞) range: (-∞, ∞) B) domain: (-∞, ∞) range: [-3, ∞) C) domain: [0, ∞) range: [0, ∞) D) domain: [0, ∞) range: [-3, ∞)
D)
24) f(x) = 25 - x
D) (-∞, 25]
Use the given conditions to write an equation for the line in slope -intercept form. 13) Slope = -3, passing through (5, 2) A) y - 2 = -3x - 5 B) y - 2 = x - 5 C) y = -3x - 17 D) y = -3x + 17
D) y=-3x+17
27) f(x) = 3x - 6, g(x) = 7x + 2 Find fg
D)21x^2-36x-12