Option E: Human Factors Design
Ergonome
A 2D physical anthropometric model based on a specific percentile, which is used with drawings of the same scale as the model to consider the relationship between the size of an object and people.
Work-Space Envelope
A 3D space within which you carry out physical work activities when you are at a fixed location.
Aesthetic-usability effect
A condition whereby users perceive more aesthetically pleasing designs to be easier to use than less aesthetically pleasing designs.
Functional Prototype
A functional prototype, of functional appearance model, is a prototype that "looks like" and "works like" a production product. Although they are made from prototype materials, these models simulate actual finishes and colors as well as mechanisms.
Explain how motion capture contributes to the development of a digital human.
A motion capture session records the movements of the actor, not his or her visual appearance. The captured movements are mapped to a 3D model (human, giant robot) created by a computer artist, to move the model in the same way.
Explain how motion capture is used to digitally represent motion.
A person wears a set of acoustic, inertial, LED, magnetic or reflective markers at each joint. Sensors track the position of the markers as the person moves to develop a digital representation of the motion.
Describe the concept of a work triangle in relation to kitchen layout.
A work triangle is used to assess the efficiency of placing key appliances in a design, for example, fridge, cooker and sink.
Describe why affordance is an important consideration in human factors design.
Affordance is the property of an object that indicates how it can be used. Buttons afford pushing, and knobs afford turning. On a door, handles afford pulling, whereas push plates afford pushing.
Manikin
An anatomical 3D model of the human body.
Appearance Prototype
An appearance prototype, or appearance model, is a physical representation of an object that literally appears like the production product. However, it does not function and is made from wood, foam, clay or other prototyping materials.
Describe interval scale.
An interval scale is a more powerful scale, as the intervals or difference between the points or units are of an equal size, for example, in a temperature scale. Measurements using an interval scale can be subjected to numerical or quantitative analysis.
Outline the use of appearance prototypes to gain human factors data.
Appearance prototypes look like but do not work like the final product. Appearance prototypes can be relatively simple, consisting of solid chunks of foam finished and painted to look like the real thing, or they can be more sophisticated, simulating weight, balance and material properties. Usually, appearance prototypes are "for show" and are not designed to be handled excessively.
Describe ordinal scale.
As with nominal scales, the labels used in ordinal scales can be words, symbols, letters or numerals. When numerals are used, they only indicate sequence or order, for example, ranking someone by placing them in a competition as "third" rather than by a score—they may have come third with 50% right or with 75%.
Discuss how designers may overlook the implications for human factors when designing multifunctional electronic controls in cars.
As with other electronic appliances, designers can overstep the mark by allowing technology to dictate the design. Many users find multifunctional electronic controls a problem, either because they do not understand them or because the controls are physically too difficult to use.
Explain how human factors specialists determine adequate product safety.
Behavioural testing: perform some activity with the product such as unpacking, assembly, operation and maintenance. Conceptual testing: evaluate safety instructions and warning messages without exposing people to hazardous conditions.
Identify the general human factors contributing to accidents.
Categories of factors that cause accidents include management (policies, safety education, decision centralisation), physical environment (noise, temperature, pollutants, trip hazards, signage), equipment design (controls, visibility, hazards, warnings, guards), the work itself (boredom and repetitiveness, mental and physical workload, musculoskeletal impacts such as force, pressure and repetition), social and psychological environment (group norms, morale), and the worker (ability, alertness, age, fatigue).
Digital Human
Computer simulation of a variety of mechanical and biological aspects of the human body.
Identify design contexts that have been purposely designed to provide only basic comfort for short periods of time.
Consider a fast-food restaurant and an airport.
Suggest how a designer could consider cultural diversity in personal space in the design of a railway carriage.
Consider a range of seating arrangements and organization patterns for the carriage furniture, for example, in some countries carriages may carry livestock or personal transport items.
Outline how large user groups may be defined. (E.2.2)
Consider age, gender and physical condition.
Explain that the ergonomic data required in systems design depends on the role of people in that system.
Consider an operator of a system or a user of a system. Reduced system efficiency and failures that occur early in the life cycle are frequently caused by poor human factors design.
Discuss how the concepts of "range of sizes" and "adjustability" affect the design of products.
Consider clothing, cars, furniture and the ironing board.
Discuss cultural differences in the sense of personal space.
Consider cultural differences, habitual patterns, family spaces, space and relationships.
Identify human factors issues in the design of freeway/motorway signs.
Consider driver sampling, decision sight distance and information coding.
Discuss the role of legislation in ensuring inclusive design for community facilities.
Consider legislation through standards, design incentives and regulations.
Discuss the importance of biomechanics to the design of a given artifact.
Consider muscle strength, age, handle size, surface texture, and torque.
Discuss how the aesthetics of a mobile phone make it look easier to use and increase the probability of it being used, whether or not it is actually easier to use.
Consider point-of-sale impact and recommendations of other users even though they have different human factors requirements.
Discuss the legislative incentives to incorporate human factors into product design.
Consider safety standards and regulations that must be followed, but also methods of avoiding future litigation against failed products. Such methods include: • always include a "duty to warn" • design safety into the product • incorporate a greater safety factor than that required by legislation • analyse all consequences of product use and misuse • rigorously test one or more prototypes in a realistic context before finalising the design.
Outline the influence of the psychological human factors of noise and temperature on the design of an open-plan office.
Consider sound-absorbing acoustic partitions, separate noisy equipment, silent phone tones, ventilation flow, static and dynamic tasks.
Identify ways in which a consideration of human factors would improve the design of wheelchairs.
Consider strength, grip, circulation space, storage, weight, reach, safety, comfort and fatigue.
Explain how a designer may incorporate intimate areas into the design of a hotel lounge bar or a cafe.
Consider the arrangement of furniture, lighting, music, personal space, colour, textures and decor.
Discuss the differences in human factors data that may be relevant for a domestic kitchen compared to a commercial restaurant kitchen.
Consider the interaction of the staff involved, heat generated, ventilation, access areas, storage, and health and safety issues.
Discuss the role of legislation in ensuring wheelchair access in public buildings.
Consider the problems of adapting existing designs compared to new builds.
Identify human factors issues related to wheelchair design.
Consider the range of anthropometric dimensions, posture, comfort and pressure management.
Explain the principles of the work triangle in relation to safety issues in a kitchen.
Consider transport of hot food, and carrying heavy objects.
Explain the methods that designers would use to research human factors for wheelchair design.
Consider user research methods related to wheelchair users and carers. Research into existing products, systems and environments for modification to allow use by wheelchair users.
Identify the human factors that are paramount in the design of neon signs.
Consider viewing conditions, eye resolution and sensitivity, night-time and daytime viewing.
Identify and measure the anthropometric data relevant to the design of a student's workspace envelope when studying at a desk.
Consider which parts of the body are relevant for the design, and whether the design is for the minimum, maximum or average measures.
Describe why constraints are an important consideration in human factors design.
Constraints limit the way that a product can be used.
Describe why visibility is an important consideration in human factors design.
Controls should be visible and it should be obvious how they work. They should convey the correct message, for example, with doors that need to be pushed, the designer must provide signals that indicate where to push.
Explain the social responsibility of designers to design for all impaired groups.
Design attempts to improve the life of people. New technology allows for increased individuality in the design of products to meet the needs of consumers of all types.
Discuss how digital humans can enhance human factors research.
Digital humans can be used to represent joint resistance, discomfort, reach envelopes and visual fields. They can be used, for example, to measure the impact of clothing on human performance.
Identify the opportunities presented by the global marketplace for design for specific impairments.
Disability groups are often referred to as minority user groups who do not benefit from economies of scale. Hence products for them are much more expensive than comparable products for other user groups. However, on a global scale, disability groups represent major markets and deserve to be treated accordingly.
Identify the objectives of human factors design.
Effectiveness (completeness and accuracy), Efficiency (speed and effort), Engagement (pleasantness and satisfaction), Error tolerance (error prevention and Error recovery) and Learnability (predictability and consistency) with which activities can be carried out and how human values, for example, quality of life, improved safety, reduced fatigue and stress, increased comfort levels and job satisfaction, are enhanced.
Discuss advantages and disadvantages of the use of ergonomes to represent human factors data.
Ergonomes are more expensive and time- consuming than manikins because of the need for 3D models but are more realistic representations of a design context.
Outline the use of ergonomes to represent human factors data.
Ergonomes are useful for assessing the relationship of body parts to spatial arrangements represented by a 3D model, for example, a chair to a desk.
Explain why the aims of human factors may conflict with other design aims.
Examine the notion of optimum compromise and consider cost, form, function, which may be more important aims to achieve in a specific design context.
Outline the legislative requirements for decibel levels for working with machinery.
Excessive noise in the workplace can cause workers to lose their hearing and/or to suffer from tinnitus (permanent ringing in the ears). The level at which employers must provide hearing protection and hearing protection zones in, for example, the UK is now 85 decibels (daily or weekly average exposure), and the level at which employers must assess the risk to workers' health and provide them with information and training is now 80 decibels. There is also an exposure limit value of 87 decibels, taking account of any reduction in exposure provided by hearing protection, above which workers must not be exposed.
Explain the roles of the facilitator, the user, the computer and the observer in a paper prototyping session.
Facilitator: explains the purpose of the session to the user and how to interact with the prototype. User: represents the target market for the product, and interacts with the user-product interface to "use" the product in response to guidance from the facilitator. Computer: a human being simulating the behaviour of the computer program in response to instructions from the user. Observer: watches what happens and can ask more questions of the user.
Discuss the relationship between fashion and human factors in the design of the mobile phone.
Fashion relates to style, for example, chunky or ultra-slim, and texture, which then have an impact on ease of use, portability.
Describe why feedback is an important consideration in human factors design.
Feedback is the provision of information, for example, an audible tone to a user, as a result of an action.
Describe the human information- processing system.
For example, a car driver processes information from the road and the car, and produces various control responses such as braking or changing gear.
Discuss safety considerations that impact on the design of an open-plan office.
For example, cable layout and other tripping hazards, people circulation spaces, storage areas, and fire evacuation plans.
Outline how the location and layout of car controls influence efficient use.
For example, car window controls on the door make it a better design than that of window controls in the centre console.
Discuss how designers have redesigned the interiors of cars to the benefit of passengers and drivers.
For example, climate control, zoned heating and memory adjusting seats.
Explain considerations that may conflict with human factors in the seating design for a fast-food restaurant and an airport.
For example, consider airport seating that has to be used during lengthy flight delays, or families who use a fast-food restaurant for a meal event rather than just for a fast snack.
Identify the shape and colour standards for road signs.
For example, different background colours for road signs, which correspond to colours used on maps.
Outline three elements of anthropometric data used in the design of a mobile phone.
For example, finger dimensions, hand size, thumb width, viewing angle.
Discuss how the use of converging technology in product design may lead to confusing control layout.
For example, gas cooker controls are turned clockwise for "off", but for an electric cooker they are the other way round. This is because the gas cooker knobs are effectively taps, operating a fluid or gas. This can be confusing for consumers and can be a safety hazard, especially with a gas hob and electric oven combined into one product.
Outline three examples of the use of anthropometric data in kitchen design.
For example, height of work surfaces, position of cupboards, depth of worktops, circulation space.
Discuss how the layout of labelling information for kitchen appliances can be misleading to the user.
For example, microwave ovens often have different labelling for control panels.
Outline one design factor related to ease of use of the mobile phone that has compromised the use of human factors data.
For example, miniaturisation of components and portability.
Outline psychological human factors data that could be used in kitchen design.
For example, perception of texture, temperature, light and colour.
Identify ways in which designers reconcile conflicting design considerations.
For example, public seating in railway stations needs to be robust, easy to maintain, look good, resist vandalism and be relatively cheap.
Describe the instruments used in the collection of anthropometric data.
For example, sliding calliper, stadiometer, sitting height table, cloth tapes, torso callipers, and Harpenden anthropometer.
Outline psychological human factors data that could be used in the design of a mobile phone.
For example, texture, sound, colour and light.
Discuss how designers have used new technology to redesign the interiors of cars to improve human factors issues.
For example, the use of colours, sound and voice synthesizers to warn the driver of different situations.
Explain how digital humans can increase the speed of the product development cycle.
Human simulation in product design enables a product to be developed more quickly, as there can be more design iterations in less time. This results in higher product quality, which meets human requirements more accurately. Digital prototypes are cheaper to produce than physical prototypes. Products are safer as a result of more thorough analysis of safety aspects. Improved productivity results from enhanced automation of the development process.
Discuss the issues of human factors research in developing and developed countries.
In developing countries, disability issues are often not covered by legislation or deemed a priority.
Identify ways in which products promote psycho-pleasure.
In the case of products, this includes issues relating to the cognitive demands of using the product or service and the emotional reactions engendered through the experience of using it. For example, it might be expected that a word processor that facilitated quick and easy accomplishment of, say, formatting tasks would provide a higher level of psycho-pleasure than one with which the user was likely to make many errors. The former word processor should enable the user to complete the task more easily than they would with the latter. The outcome may also be more emotionally satisfying and less stressful.
Discuss the importance of international standards in airport signage.
Information via the use of graphics rather than words.
Outline the use of a functional prototype model to evaluate human factors aspects of a design.
It allows for more interaction with potential users, for example, a range of percentile groups. Also bodily tolerances can be measured.
Explain the advantages of paper prototyping.
It is cheap and easy to implement. A paper prototype can be quickly and easily modified and retested in the light of feedback from representative users, so designs can be developed more quickly. It promotes communication between members of the development team. No computer programming is required, so paper prototyping is platform-independent and does not require technical skills. A multidisciplinary design team can collaborate on design development.
Explain why it is difficult for designers to develop simple intuitive user-product interfaces.
It is difficult for the designer of a product to distance him/herself from the product and look at it through the eyes of the prospective user. Reinnovation of a product often involves adding features to the basic design rather than redesigning the user-product interface from scratch, and this can result in a disorganised interface. It is important to consider necessary and desirable features, not ones that increase complexity without enhancing usefulness for most users.
Explain why consumers misuse many products due to inappropriate human factors considerations in their design.
It is not always obvious from looking at products how they should be used. Consider visibility, feedback, mapping, affordance and constraints.
Describe the relevance of the use of population stereotypes in the design of controls for products.
It is usually anticlockwise for "on" when dealing with fluids and gases, for example, a tap, and clockwise for "on" when dealing with mechanical products, for example, a radio.
Discuss the human factors advantages in LED signs.
LED signs may be used as a form of variable message signage, together with optical fibres.
Discuss the legislative requirements for temperature in the workplace.
Legislation sets minimum and maximum temperatures for different types of workplace, and workers have the right to refuse to work if such temperatures are not maintained.
Outline the use of manikins to represent human factors data.
Manikins are used with 2D drawings, mainly orthographic drawings.
Discuss advantages and disadvantages of the use of manikins to represent human factors data.
Manikins only give an approximate idea of the relationship between sizes of body parts and sizes of objects, for example, reach. However, they are cheap and easy to use.
Describe why mapping is an important consideration in human factors design.
Mapping relates to the correspondence between the layout of the controls and their required action. For example, the layout of the controls on a cooker hob can take advantage of physical analogies and cultural standards to facilitate a user's understanding of how it works.
Identify the advantages of motion capture for digitally representing motion.
Motion capture can reduce the cost of animation, which otherwise requires the animator to draw either each frame or key frames that are then interpolated. Motion capture saves time and creates more natural movements than manual animation, but is limited to motions that are anatomically possible. Some applications, for example, animated super-hero martial arts, might require additional impossible movements.
List four types of data scales.
Nominal, ordinal, interval and ratio data scales.
Explain the disadvantages of user-product interfaces that are not well organised and cannot be learnt intuitively and remembered easily.
Novice users of a product should be able to learn all its basic functions within one or two hours. However, many products are full of confusing detail and are difficult to learn.
Explain that paper prototyping is one example of participatory design.
Paper prototyping is sometimes called low-fidelity prototyping. It is one example of participatory design, that is, it involves users in design development.
Identify ways in which products promote physio-pleasure.
Physio-pleasure can be derived from the feel of a product during use (for example, from wearing a silk garment or the smooth feel of an iPod), its taste (for example, from eating chocolate) or its smell (for example, the smell of leather, a new car, coffee, fresh bread from a bread-making machine).
Psycho-pleasure
Pleasure derived from people's mental and emotional reactions to a product.
Ideo-pleasure
Pleasure derived from satisfying peoples tastes, values and aspirations
Physio-pleasure
Pleasure derived from the sensory organs, including pleasures connected with touch, taste, smell and sensual pleasure.
Socio-pleasure
Pleasure from relationships with others, for example, specific relationships with friends, loved ones, colleagues or like-minded people or with society as a whole when it is related to status and self-image.
Identify design contexts in which clay, card and polymorph may be used for human factors modelling.
Polymorph is a new generation of non-hazardous, biodegradable polymer, which can be used repeatedly for modelling. It is supplied as granules, which are poured into hot water to make a soft, pliable material. On removal from the water, the material can be moulded into the desired shape. On cooling, it becomes a tough machinable engineering material.
Discuss the impact of memory burden on the user-friendliness of a product.
Poor organisation of a product imposes a memory burden on users, who have to learn and remember how the various functions work. This results in them not using the full functionality of a product but focusing on a limited set of features and ignoring those that are difficult to remember. Thinking about how intuitively the product features can be accessed by users can reduce memory burden and make the product more user-friendly.
Discuss the problems of displacing population stereotypes in the design of controls for products.
Population stereotypes can be displaced by alternative learnt responses, but they frequently reassert themselves under conditions of stress such as tiredness or panic.
Identify ways in which products promote socio-pleasure.
Products and services can facilitate social interaction in a number of ways. E-mail, Internet and mobile phones, for example, facilitate communication between people. Other products may promote social interaction by being conversation starters, for example, jewellery, artwork or furniture. Clothing can communicate social identity and indicate that a person belongs to a particular social group.
Identify ways in which products promote ideo-pleasure.
Products that are aesthetically pleasing can be a source of ideo-pleasure through appealing to the consumer's tastes. Values could be philosophical or religious or may relate to some particular issue such as the environment or a political movement. These values can be embodied in products. For example, a product made from biodegradable materials might be seen as embodying the value of environmental responsibility.
Describe the methods designers would use to research human factors in signage.
Refer to quantitative and qualitative data collection.
Paper Prototyping
Representative users perform realistic tasks by interacting with a paper version of the user-product interface that is manipulated by a person acting as a computer, who does not explain how the interface works.
Population Stereotypes
Responses that are found to be widespread in a user population.
Outline the use of the concept of "methods of extremes" to limit sample sizes.
Sample users are selected to represent the extremes of the user population plus one or two intermediate values, for example, evaluating a kitchen layout may use the shortest (2.5th percentile), the mean (50th percentile) and the tallest (97.5th percentile).
Describe the methods used for identifying hazards and evaluating risks.
Scenario analysis attempts to identify patterns of behaviour that precede accidents. If such behaviour can be identified, then it may be avoided by a redesign of a product. Fault tree analysis determines the causes of failures by first identifying the types of injuries that may occur and concluding with redesign solutions. Hazard assessment determines probable causes for injury and indicates ways to eliminate the hazards.
Identify three characteristics of good user-product interfaces.
Simplicity and ease of use; intuitive logic and organisation; and low memory burden.
Discuss how the final design of an open-plan office is a compromise between individual space preferences and standardised design.
Space is often allocated based on standardised tasks or office status, but different individuals have different personal space needs.
Compare the collection of static anthropometric data with the collection of dynamic anthropometric data.
Static data is much easier to gather, as people are asked to remain still while measurements are taken. Dynamic data involves people carrying out tasks. People carry out tasks in many different ways. While static data is more reliable, dynamic data is often more useful.
Explain how the "four pleasure framework" promotes a holistic view of product design and marketing.
The "four pleasure framework" is a useful tool for taking a structured approach to product design and marketing. It can act as a practical tool. Using the framework can help to make us more thorough and methodical in our approach than would be the case if we tried to approach the whole thing in an unstructured way.
Describe the "four pleasure framework".
The "four pleasure framework" was identified by Professor Lionel Tiger from Rutgers University in New Jersey, US. It includes the four areas of physio- pleasure, psycho-pleasure, socio-pleasure and ideo-pleasure.
Describe the benefits of increased access to product information by impaired consumers.
The Internet offers individual users as well as organised groups the opportunity to carry out research into and gain access to products that would not be possible by more conventional means.
Explain that the human information- processing system can be represented by an information flow diagram.
The arrows represent the flow of information through the system. The boxes represent functional elements in the processing chain, where information is processed. Input -> Sensory Processes -> Central Processes -> Motor Processes -> Output
Describe a ratio scale.
The difference between a ratio scale and an interval scale is that the zero point on an interval scale is some arbitrarily agreed value, whereas on a ratio scale it is a true zero.
Discuss how the factors in E.2.2 are further defined to determine the exact nature of a user group sample.
The factors in E.2.2 are all characteristics that are important to the evaluation. These characteristics are the ones that must be represented by the members of the sample.
Describe the objectives of product safety testing.
The objectives of product safety testing are to reduce accidents and improve the safety and physical well-being of people through: • verification that a product is safe for intended and unintended uses • verification that a product meets or exceeds the requirements of all safety regulations • identification of any unforeseen ways that the product may be misused.
Identify an appropriate percentile range for the design of adjustable equipment.
The range from 5th percentile female to 95th percentile male will accommodate 95% of a male and female population because of the overlap between female and male body dimensions for each dimension.
User population.
The range of users for a particular product or system.
Motion Capture Technology
The recording of human and animal movement by any means, for example, by video, magnetic or electro-mechanical devices.
Biomechanics
The research and analysis of the mechanics of living organisms.
Discuss the "sequence of use" design principle as applied to kitchen design.
The sequence of use for a right-handed person is from left to right, from the sink to the main work surface to the cooker and to accessory work surfaces.
Outline the factors that contribute to thermal comfort in office and other working environments.
Thermal comfort describes a person's psychological state of mind and involves a range of environmental factors: air temperature, the heat radiating from the Sun, fires and other heat sources, air velocity (still air makes people feel stuffy, moving air increases heat loss), humidity, and personal factors (clothing and metabolic rate). Hopefully in an office environment where a number of people work together, the thermal environment satisfies the majority of the people. Thermal comfort is not measured by air temperature, but by the number of people complaining of thermal discomfort. Thermal comfort affects morale and productivity.
Outline the use of appearance prototypes at the design development stage.
They give non-designers a good representation of what the object will look like and feel like. For example, marketing directors can make judgments and production engineers can take data for assessing feasibility for matching manufacturing systems. They are expensive to produce, as they need to have a good surface finish and be life-size.
Describe nominal scale.
This scale only classifies objects into discrete categories, for example, food groups. Nominal means "by name" and labels are used for the categories of objects. Nominal scales are very weak, as they do not tell you anything more than that one object is different from another.
Explain how digital humans enable the consideration of human factors early in the design cycle.
Using digital humans early in the design of a vehicle for example, before a physical prototype is built: • allows the design to be optimised for user comfort, visibility and access to controls • ensures that people of different sizes will be able to see when they operate the vehicle • ensures that the user population will be able to climb in and out of the vehicle easily • ensures that the controls and foot pedals are within the reach of and can be operated by users • ensures that the vehicle can be maintained • ensures that the strength required to operate the vehicle is within the normal range.
Outline the importance of sampling to gain information about potential users.
When considering a product designed for mass use, it is not good to rely on information collected from just a few people, as it is unlikely to be representative of the whole range of users.